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Abstract—In recent years, subject identification through elec-
trocardiograms (ECGs) broaden the possibilities of existing
biometric systems. In this study, we proposed a novel ECG-based
biometric identification method designed to be computationally
inexpensive, while being sufficiently accurate for a broad variety
of application contexts. Specifically, we adapted an established
deep learning model known as Deep-ECG to process raw ECG
data with minimal preprocessing. We examined the robustness
of the model by investigating the identification accuracy across
three experiments, obtaining results comparable to more complex
state-of-the-art methods. For all experiments, we utilized the
SHAREE dataset, containing 24h Holter recordings form 139
subjects, collected in uncontrolled conditions and trained the
network by randomly selecting ECG segments during daytime.
In the first experiment, we quantified the performance by varying
the number of subjects to identify and the number of ECG
leads concurrently fed in input. In the second experiment, we
varied the number of training samples per individual and the
duration of the ECG segments. In the third experiment, we
reimplemented the original pipeline of the Deep-ECG model to
compare the performance with the new approach with minimal
preprocessing. We obtained that the new approach achieved
similar performance to the original Deep-ECG model. Also, the
new approach obtained accuracies > 80% for individual leads
and > 90% for multiple leads when using ECG segments of
2 seconds. Using this ECG duration, the minimal number of
training samples per individual to achieve an accuracy > 80%
was 100. Our study showed that the computational cost of the
Deep-ECG model could significantly be improved by changing
the pipeline previously proposed with another one with minimal
preprocessing. The source code replicating the results of this
study is available on GitHub.

Index Terms—ECG, Biometrics, Deep Learning

I. INTRODUCTION

Biometric recognition certainly brings advantages over
the traditional methods of authentication (token-based or
password-based) in physical systems (airport gates or public
transportation turnstiles) or digital services [1]. Widely used
methods are fingerprints, face recognition, iris recognition,
but recent studies claim the possibility of using electrical
signals from the beating heart as a method of recognition,
with the electrocardiogram (ECG) used as a proxy to such
electrical trait. The advantages of this approach are manifold:
I) “Liveness detection”: an ECG signal can only be detected
by individuals who are alive; II) “High security”: ECG-based
biometric is particularly secure since it is difficult to artificially
reproduce a heartbeat; and III) “Combined information”: an
ECG can give information about the identity as well as
subject’s health [1].

Unlike other recognition methods, fingerprint recognition
for example, ECG-based biometric systems have reached no
consensus for the standardization of the acquisition phase.
The literature proposed multiple acquisition modalities by
varying the ECG device (on/off-person) [2], [3], duration of
the ECG signals [4], number of ECG leads [5], posture of
the subject [6], etc. Moreover, several are the attempts to
put together databases to fairly assess the performance of
these biometric systems under different acquisition settings.
For example, Pouryayevali et al. proposed a private database
with a large number of subjects, acquired in different sessions
and with different postures [6].

As in other fields, deep learning (DL) has emerged as
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a valuable ally to enable ECG-based biometric systems to
reach significant performance. For example, the very first
convolutional neural networks introduced in this field achieved
remarkable identification rates [3], [7]. Both methodologies
preprocessed the ECG prior subject identification by means
of DL models. Specifically, the method proposed by Chu
et al. [7] first detected the timings of each heartbeat in a
given ECG segment, and then concatenated two randomly
picked beats. While methods based on DL showed remarkable
accuracy for a wide set of applications, most studies in the
literature are based on very deep neural networks, which are
computationally expensive and difficult to be integrated into
wearable and edge-devices. In our previous study instead [3],
we hypothesized that most of the personal traits would lie
within the QRS complex, and the model we proposed, i.e.,
named Deep-ECG, processed 8 concatenated QRS complexes.
This model consisted in a relatively efficient Convolutional
Neural Network (CNN). The QRS complex is known to be the
most stable ECG wave over time (with very little dependency
on heart rate too), and considering 8 of them would make
the identification more robust. However, processing only QRS
complexes completely removes other subject’s characteristics
such as depolarization of the atria (P-wave) and repolarization
of the ventricles (T-wave). In addition, both methods (and
others more recent, e.g., [8]) did not leverage the potential
identification traits due to heart rate variability, which can po-
tentially boost the performance [9]. Another limitation of this
method consisted in the computationally expensive algorithm
used to compose the set of QRS complexes to provide as input
to the CNN.

In this study, we hypothesize that Deep-ECG could be
revised by removing entirely the preprocessing phase that
detects and concatenates the QRS complexes. The approach
proposed is designed to be computationally efficient and
portable in edge devices. Specifically, this approach processes
the raw ECG with minimal preprocessing, thus potentially
leveraging both morphological characteristics of the heartbeat
as well as the heart rate variability. Another advantage of
the proposed method with respect to the original Deep-ECG
consists in the capability of performing an accurate biometric
identification based on signals acquired for relevantly shorter
time (2 s instead of 20 s), thus potentially increasing the
usability of the biometric system and the possible number of
application scenarios. In addition, since the cardiac electrical
activity can be described by means of a 3-dimensional space
(the so-called vectorcardiogram), we also hypothesize that
Deep-ECG could leverage multiple leads directly in inputs
(as in [8], or typically done in vectorcardiography), and then
information carried by the different leads would be fused
at feature representation level. Specifically, the goal of this
study is the quantification of the identification accuracy that
the proposed Deep-ECG with minimal preprocessing could
achieve while varying i) the number of subjects to identify; ii)
the number of leads concurrently put in input to the network;
and iii) the time duration of the ECG segments. We finally
compare the obtained results with a re-implementation of the

original Deep-ECG model. Our method can accurately perform
biometric identifications, thus enhancing the security [10] of
medical and consumer applications.

II. MATERIALS AND METHODS

A. Dataset

In the study, we utilized the SHAREE Database [11] from
Physionet [12], which comprised 24 h Holter ECG recordings
from 139 hypertensive patients, including 90 males and 49
females, all aged > 55 years. Individual recordings had
varying duration in between 16 and 24 hours and contained
3-lead ECG signals, sampled at fs = 128 Hz with 8 bit
precision. The ECG leads were III, V3 and V5. In these
recordings, we considered the first 15 hours after ensuring that
Holter devices were mostly activated at the same time (> 90%
of the recordings started before 12:00 pm). In addition, we
discarded the first 5 minutes since they contained artifacts
which were not related to the cardiac activity. Each ECG signal
was minimally preprocessed using the filters described in sec.
II-B.

The dataset was used to train the DL model and test its
performance. Both sets were generated by segmenting the
signals. Specifically, within each signal we established a list
of points equally spaced of T seconds apart. From this list, we
randomly selected 2N points as the starting positions of the
T -second-long segments. The approach ensured that selected
segments did not overlap and retained all characteristics of
the ECG signal. The parameter N represented the number of
training and testing samples per individual.

B. Signal preprocessing

Since ECG signals are often corrupted by noise, which may
hamper the performance of automated systems, a preprocess-
ing pipeline is usually recommended to reduce the effect of
such noise. In addition, the preprocessing allows to remove
non-cardiac-related components from the signals, which could
otherwise bias the system in leveraging ECG characteristics
not relevant for the identification.

In this work, we implemented a minimal standard ECG
preprocessing pipeline. It comprised the application of a third
order band-pass Butterworth filter with cut-off frequencies
0.5 Hz and 40 Hz to reduce baseline wander and high-
frequency noise. Additionally, we applied an IIR notch filter
to eliminate power line interference at 50 Hz. Finally, some
of the recordings contained not-a-number values. Here, we
performed linear interpolation to impute these missing values.

Figure 1 shows an example of a 3-s segment extracted from
a 3-lead ECG signal. Segments with one or multiple leads
served as a direct input for the DL model.

C. Network

The Deep-ECG model consisted of six convolutional layers
using Rectified Linear Units, three max-pooling layers for
subsampling, three Local Response Normalization layers to
mimic the natural inhibition of a biological neural network,
a dropout layer, a fully connected layer, and a softmax layer.
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Fig. 1: Example of preprocessed 3-lead ECG segment of 3 s.
The ECG is visualized with the standard printing format of 25
mm/s. With this format, small horizontal segments represent
40 ms whereas small vertical segments indicates 0.1 mV.

For a detailed description of its architecture, please refer to
[3].

The original Deep-ECG architecture was modified by ad-
justing the input and output layers depending on the exper-
iments performed. Specifically, the input layer was designed
to take in input multiple-lead configurations. The proposed
approach was based on a feature-level fusion strategy. The
input dimension was L×(Tfs) where L is the number of leads
concurrently put in input to the CNN. Regarding the output,
it consisted of a k-class softmax layer, where k corresponds
to the number of individuals enrolled in the biometric system.
The discrete numerical output of the CNN corresponded to the
identification code of a single individual. We experimentally
evaluated different values of L and T to detect the best
configuration of the proposed method.

D. Experiments and evaluation of the performance

We performed three different experiments to quantify the
performance of the network by varying several variables,
including number of subjects, number and length of training
samples per individual, and number of leads in input to the
network.

In the first experiment (Experiment 1), we varied the number
of subjects from 20 up to the full dimension of the dataset,
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Fig. 2: Example of feature vector in input to the original
implementation of the Deep-ECG model, which comprised 8
QRS complexes.

i.e. 139, while keeping fixed both N and T . In addition, we
repeated this experiment by varying the number of leads L.
Specifically, we considered lead III, V3 and V5 individually,
the pair of leads III+V3, and all three leads combined.

In the second experiment (Experiment 2), with all 139
subjects included, and considering the pair of leads III+V3
(L = 2), we varied the number N and duration T of ECG
segments derived from each subjects.

Finally, in the third experiment (Experiment 3), we com-
pared the new approach with the original strategy used to
train the Deep-ECG model in [3]. For the original prepro-
cessing, briefly, we determined the positions of R peaks in the
filtered signals using a re-implementation of Pan-Tompkins
algorithm [13]. Similarly to the other experiments, for each
subject’s ECG, we extracted 15 hours of continuous ECG
recording, which we divided into 10 second segments. Then,
we randomly selected 2N segments. From each segment, we
extracted a vector of all QRS complexes by taking a time
window of 0.125 s around each R point. To select the eight
QRS complexes least corrupted by noise, we first estimated
the correlation of each QRS complex with the average QRS
pattern of the specific segment. We selected the eight QRS
complexes with the highest correlation values for our feature
vector. If a segment contained fewer than eight QRS com-
plexes, we completed the feature vector by replicating the
QRS complex with the highest correlation value until eight
complexes were included. Segments without any R points were
discarded. Figure 2 shows an example of one of the feature
vectors.

The rank-1 accuracy metric was used to quantify the per-
formance obtained in each experiment [14]. The source code
to reproduce the results of this paper is available on GitHub1.

E. Training strategy

After the dataset was divided into train and test sets using
the stratification technique to maintain the distribution of
sample classes proportionally between the training and test
sets, the datasets were further divided into batches of 16. The
train set was randomly shuffled before training the network.

In all experiments performed, the neural network was
trained for 200 epochs minimizing the cross-entropy loss by
means of stochastic gradient descent with learning rate of 0.01.

III. RESULTS

A. Experiment 1: Varying number of subjects

Experiment 1 investigated the identification accuracy of
the Deep-ECG network with varying number of subjects and
a fixed number and length of training samples. For this
experiment, we chose N = 250 training samples per individual
and T = 2 s for both training and testing. Figure 3a shows
the achieved accuracy for different ECG lead configurations.
The results indicated a decrease in accuracy as the number of
subjects increased, particularly for configurations using only
one ECG lead. Despite this trend, the accuracy remained

1https://github.com/mizgii/DeepECG

https://github.com/mizgii/DeepECG
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Fig. 3: Experiment 1 (a): Accuracy obtained by the model while varying the number of patients to identify from 20 to 139
and considering different combinations of leads (V3, III, V5, V3+III, V3+III+V5), N = 250 training samples per individual,
T = 2 second each. Experiment 2 (b): varying number of training samples per individual N from 25 to 250 and ECG segment
length T from 1 to 10 seconds, while considering the pair of leads III+V3.

relatively high across all configurations. The use of multiple
leads generally resulted in better accuracy, highlighting the
benefit of multi-dimensional cardiac activity representation.

B. Experiment 2: Varying segment parameters

Experiment 2 investigated the changes in accuracy across
different ECG duration T from 1 to 10 seconds and number
of training samples N from 25 to 250 per patient. Figure 3b
shows the identification accuracy achieved for different pairs
of parameters N and T . The overall trend showed an improve-
ment in accuracy with longer ECG duration and more training
samples. However, the increase in accuracy was not linear, and
there were instances where longer ECGs did not necessarily
result in significantly higher performance, suggesting a more
complex relationship between sample duration, number of
training samples, and identification capability.

C. Experiment 3: Comparison with original Deep-ECG

In Experiment 3, we trained the Deep-ECG model using
the original preprocessing phase proposed in [3] for each lead
individually. We used L = 1 and N = 250. The accuracies
obtained were 95.20%, 95.56% and 96.56% for lead V3, III
and V5, respectively. The results showed that Deep-ECG,
as proposed in this paper with minimal preprocessing, could
achieve similar performance to the original model.

D. Computational time

We executed the experiments using a PC with Intel (R) Core
Xeon (R) W-2135 CPU @ 3.70GHz with 32 GB RAM, and
an NVIDIA - TITAN Xp. We implemented all methods using
Python and Pytorch.

The longest training time was approximately 1600 s, which
was obtained in Experiment 2 when using 10 s ECGs with two
leads. For this case, the inference time was approximately 3 s
for 250 ECG segments.

IV. DISCUSSION AND CONCLUSION

In this study, we extended the original Deep-ECG model
by changing the input layer to deal with ECGs minimally
preprocessed. The minimal preprocessing phase reduced dras-
tically the computational cost since neither heartbeat detection
nor QRS complex selection were necessary. The performance
achieved with the three experiments in place indicated that
removing the preprocessing was feasible.

The results of Experiment 1 showed a trend already known
in the literature [1]: when the number of subjects to be
identified increased, the performance dropped (Fig. 3a). This
trend was observed with larger dataset as well. For example,
Carreiras et al. investigated this phenomenon on a dataset in-
cluding 618 subjects, while achieving a good identification rate
(≈ 85%) [15]. Similarly, the drop obtained in our experiment
was not severe and the new model managed to identify subjects
accurately.

Another trend confirmed with Experiment 1 was the depen-
dency of the performance to the number of leads included
in the model [1], [8]. The highest recognition rates were
obtained when using all three leads concurrently (Fig. 3a).
It is worth mentioning that the lead setting used to collect the
ECGs in this database approximated the three orthogonal leads
commonly employed in vectorcardiography. Therefore, the
information carried by the three individual leads corresponded
to (approximately) independent views of the cardiac electrical



activity, which could potentially boost the identification per-
formance. Our results corroborated this hypothesis, but with
minimal improvement with respect to using two leads only.
Finally, regarding the optimal individual leads to use, Dong et
al. [16] achieved the highest performance on the frontal plane
with III and V1, while the less effective was V6. The results
of Jekova et al. [17] were instead more similar to ours with
the sagital plane more relevant (i.e., V5) and V3 less effective.
We believe that the optimal lead configuration still need to be
identified.

In general, the more training samples per individual are pro-
vided during training, the higher is the identification accuracy.
In Experiment 2, we investigated the relationship between
the number of training samples per individual, the ECG
duration and the performance, concluding that about 100 one-
second windows were necessary for a sufficient recognition
rate for such uncontrolled setting (Holter recordings). This
is equivalent to about a minute and a half of recording but
collected random during daylight. Moreover, when using about
three to five minutes of registration, we achieved significantly
better performance. Whether by increasing the duration of
segments or increasing to the number of segments (Fig. 3b),
there was an improvement in accuracy. This result was in line
with the study of Ramos et al., who found that collecting
longer ECG segments brought better results only up to a
certain time duration [4].

The training strategy employed in this study presented
both advantages and disadvantages. On the one hand, the
random selection of ECG segments during the day would make
the Deep-ECG model more robust to noise (e.g., subject’s
movements) and could be used as a strategy in edge devices.
On the other hand, the enrollment phase of the subject would
last significantly longer. With respect to this aspect, the major
limitation of the study was the impossibility to test the tem-
poral stability of the method. Indeed, the database contained
only a single recording per subject, thus preventing the re-
assessment of the performance in a second moment.

In conclusion, the obtained results suggested that the pro-
posed method can effectively be applied in real time appli-
cations and could be efficiently implemented in wearable and
edge devices
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