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Abstract—Over recent years, there has been increasing interest and better approximations to a sub-optimal solution. Atheac

of the research community towards evolutionary algorithms i.e.,
algorithms that exploit computational models of natural processes
to solve complex optimization problems. In spite of their afdity
to explore promising regions of the search space, they prese
two major drawbacks: 1) they can take a relatively long time
to locate the exact optimum and 2) may sometimes not find
the optimum with sufficient precision. Memetic Algorithms are
evolutionary algorithms inspired by both Darwinian princi ples
and Dawkins’ notion of a meme, able not only to converge
to high quality solutions, but also search more efficiently than
their conventional evolutionary counterparts. However, nemetic
approaches are affected by several design issues related ttoe
different choices that can be made to implement them. This paer
introduces a multi-agent based memetic algorithm which exautes
in a parallel way different cooperating optimization strategies in
order to solve a given problem’s instance in an efficient way.
The algorithm adaptation is performed by jointly exploiting a
knowledge extraction process together with a decision makg
framework based on fuzzy methodologies. The effectiveness
our approach is tested in several experiments in which our rsults
are compared with those obtained by non-adaptive memetic
algorithms. The superiority of the proposed strategy is maifest
in the majority of cases.

Index Terms—Adaptive Memetic Algorithms, Multi-Agent Sys-
tems, Data Mining, Fuzzy Logic

I. INTRODUCTION

generation, a new set of approximations is created by $sdect
individuals according to their level of fitness in the prahle
domain and breeding them together using operators borrowed
from natural genetics. This process leads to the evolutfon o
individuals that are better suited to their environmenhttiee
individuals that they were created from.

Nevertheless, although these algorithms have been used
to solve complex NP-complete problems [4], it is now well
established that they are not well suited to fine tuning $earc
in complex combinatorial spaces and, consequently, the hy-
bridization with other techniques may greatly improve thei
efficiency [5],[6]. Memetic Algorithms (MAS) are an exteani
of EAs that apply separate local optimization processds (hi
climbing, simulated annealing, tabu search, etc.) to rafine
dividuals. These methods are inspired by models of adaptati
that combine the evolutionary adaptation of a populatiotth wi
individual learning of its members. The choice of name is
inspired by Dawkins’ concept of a meme, which represents a
unit of cultural evolution that can exhibit local refinemé¢nk
In the context of optimization, a meme represents a learning
or development strategy. Thus, a MA exhibits the plastioity
individuals that a genetic model fails to capture.

Our idea is to introduce a parallel cooperative adaptive
memetic algorithm able to decide, depending on the instance

Optimization problems have focused the interest of tHeeing solved, how to combine and configure different evo-
research community for a long time. For that reason sevehaionary and local search metaheuristics to improve diera

strategies have been developed to solve them in a reasongieiormance. In detail, the proposed strategy computeséwo
computational time and find solutions with a near optimumuential steps dealing respectively with evolutionary kel
guality. Among these strategies, metaheuristics play adun methodologies. During the first step a collection of popatat
mental role. Recent literature, e.g. [1][2][3], reveals alev based methods cooperates to find a high quality solution that
variety of problems and methods that appear within thisctopis forwarded to the second step where a collection of local
being one of the most studied Evolutionary Algorithms (EAspearch methods cooperates to improve it. The cooperation
EAs are an interdisciplinary research field which takes its performed by exchanging solutions among metaheuristics
inspiration from natural selection and survival of the fitte in precise moments and under certain conditions that are

EAs operate on a population of potential solutions by amglyi controlled by a set of TSK fuzzy rules [26]. The fuzzy engine

the principle of survival of the fittest in order to producétbe

uses knowledge obtained by a preliminary machine learning
process that analyzes the performances of different opdimi
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The parallel and distributed nature of our approach is fully
suitable to be modeled using a multi-agent system where
software agents compute metaheuristics under the sumervis
of a coordinator agent whose intelligence is given from the
aforementioned fuzzy rules and machine learning knowledge

The paper is organized as follows, in Section Il we present
some related work, in Section Ill we describe the adaptive
memetic algorithm and its developing process, next, in Sec-
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Fuzzy Decision Trees

tion IV, we introduce a study case, Symple Plant Locati
Problem, and produce an adaptive memetic algorithm to sc
it. In Section V we test the validity of the approach and fipalll
in section VI we present the conclusions and future work.

ptive MA
Fuzzy Rules

V.
A
i he

Evolutionary Agents E

Ki
Extraction Process

Metaheuristic
Problem Solving

Coordiﬁator Local Search Agents L

II. RELATED WORK

Agent
Memetic algorithms are metaheuristics designed to fi

solutions to complex and difficult optimization problem8]2 Problem optmizaton
They are extensions of evolutionary algorithms that inelu a— FZ‘":] (R el
a stage of local search optimization as part of their sea....
strategy. MAs have arise as a response to the problems showe . . .
by EA?;/ which generally suffer F;rom slow cE))nvergence t\glg'dl' Adapiive Memetic Architecture.
locate a precise enough solution because of their failure to

exploit local information. This often limits the practidsl Fig. 1) is introduced. The proposed memetic algorithm is
of EAs on many large-scale real world problems where themputed in two steps, dealing respectively with evoltsign
computational time is a crucial consideration. and local methodologies. In the first step, a collection of
From an optimization point of view [25], MAs have beenjitferent evolutionary optimization strategies (Genefigo-
shown to be both more efficient (i.e., requiring orders Qfihm particle Swarm Optimization,..) are executed in a
magnitude fewer evaluations to find optima) and more eﬁec“parallel way in order to locate the best region of problem’s
(i.e., identifying higher quglity solutions) than traditial EAS search space. Successively a set of local search stra(Egies
for some problem domains. As a result, MAs are gainingearch, Simulated Annealing,.) simultaneously exploits this
wide acceptance, in particular, in well-known combin@&bri region in order to find a high quality solution. In each stéye, t
optimization problems where large instances have beerdoly,timization strategiemtelligently chooseheir configuration
to optimality and where other metaheuristics have failed B%lrameters andooperateby exchanging their solutions in

produce comparable results adaptiveway. The adaptability is achieved by means of a fuzzy

However, despite the interesting results achieved by MAje pase able to evaluate information extracted by a prelim
the process of designing effective and efficient MAs stithsh nary machine learning approach [10] that ranks computation

some drawbacks. For instance the difficulty of fine tuni”gtheperformances related to evolutionary and local metahtnsis
control parameters, which may require extensive tests, lied to a given optimization problem.

specifically, of finding a problem-specific meme that suits th ' o4 previously mentioned the architecture is based on a

problem of interest [34]. In fact the choice of memes has beﬁﬁhlti-agent system where a set of so caltgdimization agents

shown to greatly influence the search performance of MAS [ 1y ytes the cooperating metaheuristics under the s
[13], [20], [24], [29], [33], [35]. This evidence has led BBCh ot 4 coordinator agenwhose intelligence is provided by the

community to develop MAs capable of adapting their behavigt,rementioned fuzzy rules and machine learning approach.
to the characteristics of the instance being solved, oioigin

third generation MAs or adaptive MAs. ] o
From the different techniques included in adaptive MA&- Agent-based Memetic Optimization
three approaches stand out on account of their results andlet P be an optimization problem angd a given in-
popularity, namely hyperheuristics, co-evolution of meraed stance ofP. As said above, the proposed memetic algorithm
meta-Lamarckian learning. Hyperheuristics [13], [24]idal tries to solveq by means of a collectiom’ = E U L
the idea of fusing a number of different memes together, s optimization strategies, wher& = {mj,mo,...} and
that the actual meme applied may differ at each decisidn= {m g1, m|g|42,-..,m a7} CONtAIN, respectively,r|
point. Co-evolution of memes [33] introduces the idea avolutionary strategies an(l.| local search methods. The
including in the representation of each individual infotiba computation of metaheuristics i is accomplished by two
about what meme has to be used to perform local seasdquential phases dealing respectively withand L. Both
in the neighborhood of the solution. And meta-Lamarckiagvolutionary and local strategies are computed througintage
learning [29] proposes adapting MA's behavior by on linparadigm and, in detail, by exploiting an agents collectios
choosing multiple memes during an MA search in the spirfta;, az, . . ., ajas }, where the agents subset;, az, . .., /g }
of Lamarckian learning. is related to evolutionary strategies, whereas, the ageiiset
In this paper we propose an adaptive MA diverse froffu g1, a|p42,-..,an} IS related to local optimization
the previously explained, which uses knowledge automiticamethods. The coordinator agetft is responsible of initiating
extracted from precedent executions of the metaheuristicsoptimization process by parallel activating optimizatagents
order to decide how to combine them to obtain better resulemd, in each phase, it coordinates the cooperation among
optimization agents by choosing their configuration paranse
I11. A PARALLEL COOPERATIVEADAPTIVE MEMETIC and exchanging their solutions in adaptive way.
ALGORITHM The adaptability ofz® is performed by considering knowl-
In this section a Parallel Cooperative Adaptive Memetiedge coming from machine learning (see section 11I-B) coded
Algorithm (PCAMA), based on a multi-agent architecturee(seby means of a collection of fuzzy decision trees, narfied
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Each branch from root to leaves of trees’ihcorresponds Algorithm 2: Coordinator Agent’s Pseudocode

to the characterization of a particular class of problem in-input: 7: set of trees, n. execution tine for each
stances, whereas, leaves belonging to these branchesnconta ai, ¢ probleminstance, M =FUL: set of
information about suitability of strategies to solve thlass. metaheuristics

. . o Output: solution: best sol ution found
Coordinator agent analyzes these trees in order to indit@&u pegin

the collection of branches more similar to problem’s instan anal yze T in order to select the best

q. In particular, trees analysis supports coordinator agent \’,)Vﬁlgn:rt];::oxglﬁgﬁsis fng{ Sgﬁ;ﬂeuﬂ?t aheuristic in M;

1) choose the best metaheuristic parameters and 2) rank the conpute each a; related to E in a parallel

metaheunsucs suitability to sol_vpthrough ngmerlcal we|ghts \g%i oit fuzzy rules, T and bl ackboard data

in the rangel0, 1]. Through weights analysis, may realize to select POOR, a set of agents

that a metaheuristic is poorly performing and, consequgentl performing poorly;

it may update its solutions by adding a set of better solstion forei?ﬁggggtaa'”ngsosgge o o contain hg a

computed by other more suitable metaheuristics. col lection of nmore suitable sol uti ons:
The cooperation is performed in a synchronous way, i.e. op- dsend messa 10 a;

timization agents evaluate,times, the objective function then end e

they stop their computation in order to allow the coordinato bestsolution = read the best solution from

agent to collect their information and make decisions. Afte bl ackboar d; o _
use bestsolution as initial solution for agents

that, each optimization agent continues exploring thecsear related to L:
space but executing coordinator agent’s orders. while end condition is not satisfiedlo _

To perform the communication betweefiand optimization \f\gg?”te each a; related to L in a parallel
agents, a blackboard architecture will be used. Bla_cktg)anrel exploit fuzzy rules, T and bl ackboard data
data structures usually used as general communication-mech to select POOR, a set of agents
anisms. In our proposal each agent has an assigned space on performi ng poorly;

prop . . .g . . g P foreach agenta in POOR do
the blackboard where it periodicallyrites information about conpose a MeEssage mess, containing a
its found solution. The coordinateeadsthis information and collection of nore suitable solutions;

directs the search of each agent. eng SENG messa 1O ai

Fig. 2 shows the architecture of the proposed MA, while end _ _
Algotrithms 1 and 2 show respectively the pseudocode of 4, €turn best sol ution obtained;
optimization and coordinator agents.

Blackboard {75, - B'aCkboard"g A crucial question of the proposed architecture is how
= to model thea®’s intelligence to allow it to evaluate meta-

o . heuristics performances and control the cooperation among
L2 |* Lam F optimization agents. This goal is achieved using a set afyfuz

rules that exploit the knowledge obtained by machine |eayni
More preciselya® uses fuzzy inference to:

« choose the best metaheuristics’ parameters values;

« individuate when poor evolutionary metaheuristics have

@ < 6% A | Fuzzy to receive a collection of individuals from other strategie
N %@@

Weight trees

Bules that are showing a better behavior.
« individuate when local search methods have to recieve
solutions from other strategies showing a better behavior.

Coordinator agent implements first behavior by using a col-
Fig. 2. Adaptive MA architechture. lection of | M| fuzzy decision trees obtained through machine
learning. These trees analygén order to infer - via the infer-
ence engine proposed on [21] - the most suitable parameters

Parameter trees

Algorithm 1: Optimization Agent's Pseudocode. values for each metaheuristic /. Moreover, the coordinator
Input: ¢: probleminstance, m;: metaheuristic agent realizes the remaining two behaviors by consideving t
bedi assigned to agent,n: execution tinme additional trees coming from machine learning. In dethitse

egin . L.

read message mess. from coordinator agent ac: trees analyz_q and r_espectwely r_ank metaheuristicsAhand

if mess. is received then L, by returning a weights collection = {w;,i = 1,...,|M|}
repl ace poor solutions with solutions ] |E| = _ | M| .
contained in mess; Wh?l’e wi € -[O, 1Jand ;" wi = Z':\E\Jrl wi = 1; the

end o weightsw;, with i = 1,...,|E|, are the related t&, whereas,

solution = compute metaheuristic m; the weightsy; with i = |E|+1,...,|M]| are the related td..

eval uating objective function n tines; . o )] . o

wite solution on bl ackboard:; In short, each weight; is associated with a metaheuristic

end m; € M and represents its suitability to solvge More

precisely, letm;, m; € E or m;, m; € L be two optimization
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strategies them; > w; implies that, according to previous e A solution “near” to the best solution obtained among

executions;** metaheuristic obtains an overall better perfor-  the meta-heuristicsy, € S is sent tom;,. Where “near”

mance than that obtained ¥ metaheuristic. means that the best solution is changed by applying,
In each phase, the coordinator agent uses a collection of (ﬁ] times, a mutation operator that dependsrfan

TSK fuzzy rules (E| — 1 for each metaheuristic) exploitir@ ] - .

in order to derive the collection of poor strategies. Fordhke Example: Fu_zz_y _Rul_es Firing Processin th|_s example we

of simplicity the rules shown below are related to a strateg} ppose a minimization problem, two evolutionary metaleur

my € E computed during the evolutionary phase (howev&FS GA and PSO|€| = 2), the fuzzy seenough takes the
rules acting in local phase are equivalent): values[0,0.1,1,1] and thea threshold is set to 0.5. Table |

. . shows three different configuration of the framework.
if (w1 -dy) is enoughthen poorness; = 1

e TABLE |

if (wnh—1-dp—1) is enoughthen poornessy_1 =1 SYSTEM'S STATE

if (wht1-dpy1) is enoughthen poorness,1 =1 & PO | GA PO | GA PSO

. wei ght 0.43 0.57 | 0.68 0.32 | 0.55 0.45

; . ; _ fitness 178 154 178 154 178 154

if (w1 - dz)) is enoughthen poorness|p| = 1 activation | 0.77 -0.58 | 0.43 -0.91 | 0.61 -0.74
change yes no no no yes no

where:

— my, is the metaheuristic being evaluated by the rule; In the first case, according to the weights obtained from the

= d;i = (§(mi) — &(my))/ max (§(m;),{(my)), where  tree, PSO has a better overall performance (a higher weight
¢ is a measure of performance defined by the usethan GA) and also a better solution. Whef evaluates the

- w; € [0,1] is the weight ofm;; _ _rule for GA, it obtains an activation value @£77 (> «),

— enough is a fuzzy set with trapezoidal membershiphich means that PSO has to send some individuals to GA.
function defined by a quadruplefu, b, c,d) and o the other hand, the rule for PSO is not fired. In the second
whose universe of discourse is the rangel]. example, GA has a better overall performance but the current

— poorness; With i = 1,...,[El, is a TSK variable ¢ yions remain the same. In this case, the rule is not fired f
bgl_onglng to[0,1]. ngher values Of'_joomessi n- GA, although its current solution is worse than that of PSO.
dividuate a bad behavior of;. In this casesn; is Indeed, according to the weights, GA is much better than PSO
cgndldate to change its s_olutlon. . for this specific instance. In this way, a premature convecge

_ The main goal of each rule is to change the positiqd 5cql solutions of low quality is avoided. The last exaenpl
in the search space of a metaheuristic which is showing@gimilar to the previous one but the difference of weights i

bad performance for a position near the solution of anothi%t as high, and thus the rule is fired for GA, because we are
metaheuristic with a better behavior. Note that this rulestr 0.« -onfident of the performance of PAD.

to solve the problem that appears in parallel strategief [14
where unrestricted exchange of solutions favors a premigtur
converge to local optimums characterized by a low quality. B- The Knowledge Extraction Process
To perform the firing of the fuzzy rules a threshold value As previously mentioned the adaptability of the proposed
« is used. In other words, only those rules whose activatignA is provided by the knowledge obtained through an ex-
exceedsx are fired. In the event that more than one rule igaction process formally introduced in this section. With
activated ther© applies all of them. In this way, it is able to|pss of generality, letP be a maximization problem/ a
simultaneously adapt the behavior of several metaheesisti training instances set oP characterized by different prob-
The metaheuristics’ solution changing is performeddSy |em featuresF — {fi,fzs....foc},andM = EUL a
by taking into account two different situations: 1) a singlgollection of |E| evolutionary strategies and.| local search
antecedent clause of rule is fired or 2) many clauses are fikggtimization methods. The aim of the knowledge extraction
during inference process. In detail, let” M be the collection process is to evaluate the performances of metaheuristics i
of strategies related to fired clauses andrigt be the poor 37 when applied to instances ih This process returns a set

metahe_uri;tic that have to receiv_e better solutions. Iinglsi 7 — {¢, ¢, .. St} U {t¥,tF} containing|M| + 2 fuzzy

clause is fired thenS| = 1 otherwise[S| > 1. decision treest” and¢’ respectively model the suitability of
Then, during the evolutionary phase{ € E andS C E), the strategies inE and L by providing the aforementioned

solutions exchange is performed as follows: weights Q = {w;,i = 1,...,|M|} and, on the other hand,
1) |S| = 1. A proportion of the worst individuals ofi;, is  each treet;, with i = 1,...,|M|, provides the most suitable

substituted by a set of solutions consisting of the beghrameters choice for metaheuristis.
members of the population of strategy, € S. The  The Knowledge extraction process is subdivided in two
proportion is equals tay, i.e. the suitability ofm,. subphases, Fig. 1, Data Preparation and Data Mining.

2) |S| > 1. A proportion of the worst individuals of;,, 1) Data Preparation: In this phase, metaheuristics i
equals toZLi‘l wj, is replaced by a set of solutionsare applied to instances ih in order to build a collection
chosen by each metaheuristic using previous processof databased) B, named refined databases. The obtaining of

In contrast, during local optimization phasey{ € L and these databases is carried out in two steps. First, infoomat
S c L) the exchange is performed as follows: about the performance of metaheuristicshih is stored in a
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set of so calledaw databasesSuccessively, data contained in  3) refined databasel,,, is updated with a new entry

raw databases are processed to compuig which contains containing the description of instangg and the best
additional information useful to extract significant knedte parameter combination, i.€f{, f5,..., f¢) andpc.’,.
during data mining. The remaining two databases are directly related to ewsiuti

~In particular, the obtaining of the raw databases is cadry strategies inZ and local search methods i In detall,
ried out in the following way. Letn; be a generic meta- the refined databasg is processed as follows:
heuristic in M whose computation depends upon a collec- 1) for each metaheuristie; ¢ E, for each instance, € I

H S 1 2 T4 T . .
tion of parameterst; = {p;,p;,...,p;"} and letVi; = and for each parameters combinatjef) € V; 1 x V; 5 x

1 2 Si,g H - . ni - . .
{.“z‘-,j’”i,jv E ’?i,.jj}’ with j = 1,...,n;, be a finite collec ... % Vi, the average fitness value is computed:
tion of s; ; suitable values fop!, the j'* parameter ofit" bk
metaheuristic. Consequently,df = [];", |V;,| is the number i Dou—1t-1)k (fity)
of combinations of parameters values (i.e. the cardinalfty W9 = L

product setV; ;1 x Vip x ... x Vi, ) then data preparation 2y for eachm, € EF andg, < I, let us select the best
phase solves each instance I by applying,r = ¢; - k times,

the metaheuristiow;; & is theiterative factor i.e., a predefined
value used to obtain more accurate performance estimations y
These performance estimations are utilized torfill| 7| rows s — Jity
into the database related to metaheuristic In particular, a ! |E| goqa.l

. =1 fztbest
raw database row contains:

- 3) f hm; € E and f h instance, € I th
« a description of the specific instance of the problem; ) for eachm; & and lor each Instance, < ©

th | fth i db h metaheuristic: refined database is updated with a new entry containing
+ thevalues of the paramelers used by each metaneunstic, .o description ofg, and the metaheuristic suitability
« the final solution obtained.

i weight, i.e,(f&, f&,..., f%) andw;.
Table I shows database entne; rel_atedrm "%‘”d the follow- Databasel;, is analogously built by replacing evolutionary
ing example illustrates the application of this step.

strategies iny with local search methods ih. Table Il shows
Example Let m; be a GA then parameters sets could be: refinement processes.

Refined databases will favor the application of data mining
phase in computational efficient way. Indeed, Data Prejoarat
Vi1 ={0.1,0.3,0.7} - e i :

' applies metaheuristics if/ in order to create a collection of

Viz =10.01,0.1,0.3} |M| raw databases containing - ¢; - k rows. The refinement
where pll could be the crossover probability amf the step builds|M| + 2 refined databases where databases in the
mutation probability. Then, the number of parameters @lugubset{d,,,[i = 1,...,[M[} contain |I| entries, whereas,
combinations will be|Vi1| - [Via| = 9. Now, if & = 10 databased;, anddg contain, respectively/|-|L| and|I|- |E|
then data preparation process solves each instared by entries. Consequently, a generic data mining technique ana
applying,k-9 = 90 times, the genetic algorithm. The collectedyzes /"] 1| - ¢; - k data samples to extract knowledge from
data fill 90 - || rows in genetic algorithm’s raw database. raw database, whereas, the same technique analyizes- ||

Next step is to analyze and refine raw databases in orcgarta samples to extract knowledge from refined databases. Be
use in real cases k >> 2 = 2. |M|-|I| < M1 ¢; -k,
to compute DB = {dm,,dm,,-..,d dg,d;} where e (M-I < 322 - c

. ) M| our data mining approach, based on refined databases, is more
|IDB| = |M| + 2. Refined databases are smaller than ra g ap

datab q tain additional inf i ful teaekt ¥fticient than other approaches working on raw data.
atabases and contain additional information usetul toae 2) Data Mining: Once gathered performance information
significant knowledge during data mining. In detail, eagh

o . _ ™ and collected it through refined databageB, the data mining
contains information about the most appropriate comlonati

f i | d bv t Ve inst i O phase extracts the collection of knowledge modeéls
of parameters values used by; to SOWe Instances . on Our data mining approach exploits fuzzy decision trees
the other handdg and d; respectively contain information

: . - (FDT) [21] to extract knowledge fromDB and build the

about the weight$? associated to metaheuristics fhand L. : .
. ) collection of treed” = {t1,ta, ..., t;57 JU{t?, t*}. Two main

In order to build databases ifd,, |i = 1,...,|M]|}, for ! {t1,to,- ot JUEE €7} Two ma

h metaheuristion. € M it datab ; d reasons have guided this choice. First FDT interpretabilit
]?oa”(z)wg?e aneunstio; € M 1S raw database IS processed azqision trees stand out on account of their simplicity aradl

) ability, which enables a full understanding of the knowledg
1) for each instance;, € I and for each parametersihat guidesa®. Second, their fuzziness, which can improve

a,i

average fitness valugity, = max*, |, (fit)
and compute thenetaheuristic suitability weighds:

P = {p}.p},p}|p}.p} € [0,1] andp} € N}

combinationpcy, € Vi x Vipx...x V", b=1,....¢i, inference performance by means of approximate reasonig an
the average fitness value is calculated: provide an easy way to obtain the weiglis
_ bel o (Fi9) Before continuing we should explair!g FDT _const_ruction
avgy' = == + k) - and inference processes. FDT construction considersicesa
_ from a learning database. Each instance is composed by a
2) for each instance, € I, let us definepc;’, € {pcj|b = collection of attributesA where a given attribute; € A,
1,...,¢;} as the parameter combination computing theepresents thelassi.e. an attribute used to locate instances

best average fitness valueax;’ ; avg,™; in groups. Then, an FDT codes a constraints collection that
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TABLE I
DATABASE RELATED TO METAHEURISTICm;. FOR EACH INSTANCEq € I, CHARACTERIZED BY ATTRIBUTES{ f1, f2,..., fo}, m; IS APPLIEDK TIMES
FOR EACH COMBINATION OF PARAMETER VALUES RELATED To{p},pf, . ,p;”}. fit¥ REPRESENTS THE™ FITNESS VALUE OBTAINED BY APPLYING

m; TOut™ INSTANCE INT.

Attributes Parameters Final
1 2 n,; .
fi Fa .. fo | »t P o p;* | Solution
I nstance Par . I't.
Conb.
T T T T T T —T
1 1 2 R s Vi1 Vi -e- Vin, fity
1 1 1 1 1 1 1
1 2 1 2 fo Vi1 Vi o Viin, fity
1 1 1 1 1 1 1
k 1 > R s Vi1 Vi -e- Yin, fit
1 1 1 1 1 2 1
1 1 2 fo Vi1 Vi o Viin, fity i
1 1 1 1 1 2 1
5 2 J1 J2 ce- fo Vi Vi 2 Ving -thk+2
1 1 1 1 1 2 1
k fi I3 fo Vi1 Vi o Viin, Fith g
1 1 1 Si,1 33,2 Si,ng 2,1
1 1 2 e Vi Vi e Ying th(cifl)-kJrl
1 1 1 S, 1l 54,2 g 1
2 1 2 fo Vi1 Vi 2 S Uin, Fit(e;—1)-kr2
Cq
1 1 1 Si,1 8i,2 Sin, 1
k 1 2 o Vi Yi,2 200 Wgp fite, x
2 2 2 T T -2
1 J1 J2 fo Vi Vi,2 Ving fity
R - B B O SN W I
2 2 2 1 1 1 2
k J1 J2 ce- fs Vi Vi 2 Ving Jity,
2 2 2 1 1 2 .2
1 1 2 s i Vi1 Vi2 cee Ving fiti iy
2 2 2 1 1 2 .2
2 2 1 D i Vi1 Vi,2 Ving fltk+2
2 2 2 1 1 2 .2
q2 k fi f3 iz Vi1 Vi,2 Ving fith ik
2 2 2 Si,1 84,2 Si,ny .2
1 1 2 fo Vi1 Vi2 Ving; flt(cif'l)-kﬁ»l
2 2 2 84,1 53,2 Siyng 2
2 J1 J2 fo Vi Vi2 e Vi f”(ci—l)-w&
2 2 2 Si,1 54,2 Si,ny .2
K /i fa fs Vi1 Vi,2 o Vi Jite,
[T [T 17] 1 1 1 T
1 1 2 R Vi1 Vi2 Ving fity
[1] || 11| 1 1 1 I
2 1 @ iy Vi Vi2 Vi, fity
l k2
[1] || 11| 1 1 1 LI
k 1 2 aoa Vi1 Vi 2 Ving; fity,
[1] [T] |1] 1 1 LT
1 1 2 fo Vi1 Vi2 ing f”k+1
11 I1] |1 1 1 2 T
2 1 2 fo Vi1 Vi,2 Ving .thk+2
2
11 I1] |1 1 1 2 |1
a1 k 1 2 fo Vi Vi2 Ving -thk+k
| 1] 1] |1 Sl si,2 Si,ny |
1 lm 2‘” fT ‘ vi’ ) Ui’22 vi@i flt‘(;‘iil)',CJrl
I i, i, T, 9
2 1 2 N Vi1 Yi,2 s Ying f”(cifl).k+2
Cq
| 1] [I] |7] Si,1 $i,2 Si,my call 2
k 1 2 e o Vi1 Vi o Yng thcizk
Raw Dat abase Entries

individuates groups defined hy Learning process is showngiven by the user or obtained by means of an automatic fuzzy
in Algorithm 3 where the stop condition is defined by th@artition method, which commonly obtains better resultse T
first condition satisfied among the following: (1) the algomm chosen FDT has associated a fuzzy partition algorithm [22]
generates a pure node - a node where all instances are fthat will be used to obtain the fuzzy partition.

the same class -, (2)/ is empty, (3) the algorithm generates On the other hand, given an instangeinference is per-

a node containing the minimum number of instances allowefdrmed in the following way:

Each leafl stores, for each class the number of instances, 1) for each leaf, calculate’s membershipu(g), as the

vl, that satisfy its branch’s constraints (totally or pakigl satisfaction degree of its branch’s constraints.
during learning process. FDTs can deal with both numericalz) for each class return a membership vatue.(q) =
and nominal attributes, but when treating numerical vales number_leaves !

previous fuzzy partition is needed. This fuzzy partitiom ¢ee =1 a)- purber—etass 1

If only one class is needed? then it should be chosen that
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TABLE Il
FROM RAW DATABASE TO REFINED DATABASES ENTRIES
‘ ‘ Attributes Parameters Final
i fe fo | D} p; ... p;* | Solution
| nst ance Par . It.
Conb.
1 T 5 L. e v%yl v%z . véni fit§
1 2 i 3 i Vi1 i,2 i ing fity
k (A - UURNY S Y U, PO s S O 110
1 T 3 e fe v) 4 Vip .o Vi, fitiyy
. 1 1 2 ;
2 2 i 3 e fe Vi1 Vi e Vi fith o
da k VU S e fe vi 4 Vip .. Wi, fith ik
$q,1 84,2 51,n )
i > i Ui,l Ui,12 i,nil th?ci71)4k+1
S4,1 54,2 Si,my o
2 1 5 000 s ”i,11 Ui,IZ 000 Ui,niz flt((lci—l)«k+2
S4,1 54,2 Simg X
k i i - fe vifl ”i,lz A vifn:_” fltgluk
| | Fitness Average Conputation | |
1 avg. it 3 000 fie v; 1 0 000 vil,'n.i ‘“}gf’%
2 avg. || 1 f8 o fe | vin wle e w0l | avgyt
e . ..
a ave || S5 s et wE o | avel
| | Database Entry Creation | |
£ g2 e pe, I S W
Entry of Database dm; Entry of Database dp or dg
Algorithm 3: FDT Construction Pseudocode [ Attributes ] |
[
Input: E: training instances, Fuzzy Partition: ; ; 5 n .
attributes partitions in fuzzy sets '1 21 ° L
Output: ¢ FDT obt ai ned I 2 : fo “i
begin o _ _ 3 : : : :
Create root node, containing instances in E; A P ] P R
Cbtain M, the set of attributes that describe I f]” : P o
E and where nuneric attributes are . 2 - 4

di scretized using Fuzzy Partition;
Nodes_wi t hout _expand = {root node}; a —
while end condition is not satisfiedio % B F

N = next (Nodes_wi t hout _expand);

foreach attribute m € M do 8 -
Cal cul ate information gain in M taking = ¥§
into account the menbership of each S fifidi i S
instance e to node N; 3 =]

end S [@=09 @i=03 g

Choose mypqrt the attribute with maxi mum 9 z;:oj ‘ o= 0.2 w;:0:7’ —

gain; i 7 2

Divide N in subnodes according to the

possi bl e outputs of mpart;

Add to Nodes_wit hout _expand the subnodes ——

of N;

Elimnate mpart of M;

end Fig. 3. Data Mining Phase.

end

with a highermu.(q).

In our case, classes are the best parameter combination arfinally, once this phase is finished, the collectionf FDTs
the weight and branch constraints are used to analyze gestathat modelse®’s knowledge, is obtained, and the coordinator
features. A summary of data mining phase is shown in Fig. i8.ready to control the execution of the optimization agents



JOURNAL OF BTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

IV. A CASE STUDY: SIMPLE PLANT LOCATION PROBLEM  B. Construction of the Memetic Algorithm

Inorder to test and validate the feasibility of our proposal  Hereafter PCAMA configuration process is presented.
this section PCAMA has been applied to a concrete problem:1) Metaheuristics chosena crucial issue in the design of

the Simple Plant Location Problem (SPLP). PCAMA is the choice of the metaheuristics that will made up
the system. For the problem being considered we have chosen
A. Simple Plant Location Problem four strategies, two evolutionary metaheuristics, a Genet

ﬁ\lgorithm (GA) and a Particle Swarm Optimization (PSO),

The simple plant location problem (SPLP) is a well-know nd two local search metaheuristics, a Tabu Search (TS) and

combinatorial optimization problem in which some plant'g1 . .
or facilities must be chosen among a set of candidates a?.'@mulated Annealing (SA).

each of the customers from a given set must be aIIocateoz) Applying the Knowledge Extraction Processhe first

to one of them in such a way that the total cost (Iocatio?‘{ep of PCAMA is the acquisition of the knowledge that

plus allocation) is minimum. Many papers on this problelwi" support coordinator’s decisions by applying the afosn-

can be found in the literature (e.g. [11], [12], [17], [18])loned knowledge extraction process. _
SPLP can be formally defined as follows: Consider a set 1N first phase, Data Preparation, required the generation

I = {1,...,m} of candidate sites for facility location, andOf 192 instances varying on the previously mentioned SPLP’s
asetJ = {1,...,n} of customers. Each facility € I has features. Each generated instance was solved 5 times by usin

a fixed costf;. Every customeyj € J has a demand;, and GA, PSO, TS and SA with different parameters combinations.
T J? . . . .
¢;; is the unit transportation cost from facilityto customer Re€garding GA different alternatives were chosen for slact

. Without a loss of generality we can normalize the customgirategy, mutation probability and cross probability. Cem-
demands tah; = 1. It has to be decided: 1) facilities to be/"d PSO different values were chosen for topology, and pa-
established and 2) quantities to be supplied from facilip '@meters that control global memory and local memory. With
customerj, such that the total cost is minimized. regard to TS, different values for tabu list size and longnter

Mathematically, the SPLP is formulated as follows: memory are used. Finally, with respect to SA, different ealu
were used for cooling schedule and percentage of neighbors t

m.n be considered. The information obtained from these exaasiti
min Z Zcijzij + Z fiyi was preprocessed to obtain the refined databases. Porfions o
i=175=1 =1 the different refined databases can be seen on tables I\,V,VI
Subiject to: . TABLE IV
Zmij _ Lv] cJ DATABASE D FOR POPULATIONBASED METAHEURISTICS
i=1 custs. rFC fixedC %Conn. gauss VH w
0<ay <yie{01},viclandvjes 1000 0015 iru 0445 true PO 068
10000 0.031 false 0.003 false GA 0.63
where 10000 0.031 false 0.003 false PSO 0.27
o x;; represents the quantity supplied from facilityto
customery;
o y; indicates whether facility is established or not. TABLE V
Let the set of established facilities & = {i|y; = 1} with DATABASE Dy, FOR TRAJECTORYBASED METAHEURISTICS
cardlnalltye - |EF| - L custs. rFC fixedC  %Conn. gauss  Md w
As far as computational complexity is concerned, although—555 0 0I5 True 0 445 true TS 0 56
some special cases of SPLP are solvable in polynomial time, 1000 0.015  true 0.445  true SA 0.44
[8], [15], [19], [32], in general, it is a NP-hard problem [23 10000  0.031 false 0003 false A o 20
In order to apply PCAMA on SPLP, it is crucial to deal
with a large number of problem’s instances characterized by
different features. The choice of problem’s instances tiyrea TABLE VI

influences the behaviour of the knowledge extraction pces,
and, consequently, PCAMA's performance. For that reason we
have identified some instance’s features that may infludr&e t custs. rFC  fixedC %onn. gauss paraml paran?
behavior and performance of different solving strategies: 150 1 false 0.748  true  0.001 0.6
1000 1 true 0. 415 true 0.01 0.6
o Number of customers.
« Ratio between facilities and customers.
« Equal or different establishment costs for facilities. After the obtaining of these databases, Data Mining phase
« Connection percentage between facilities and customesgs applied in order to obtain the FDTs that configure the
« Uniform or normal distribution for unit transportationcoordinator agent. An example FDT can be seen on Fig. 4
costs. In order to complete the coordinator’s intelligence deifomit
Through this characterization different SPLP’s instancei is necessary to define the measure of performanosed
that highlight distinct problem features. by the TSK rules, the fuzzy setiough and choose the value

ATABASE Dy, RELATED TO THE GENETICALGORITHM PARAMETERS
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In order to validate the results obtained, some statistical
techniques using non parametric tests [16] have been consid
ered. Specifically, the test used to compare two memetitestra
gies is Wilcoxon signed-rank test, which is a non-pararoetri
statistical procedure for performing pairwise comparsba-
tween two algorithms analogous to paired t-test. But when
more than two methods need to be compared Wilcoxon tests
are not enough and a different type of test is needed, in this
case we will use Friedman test which is a non-parametric test
equivalent to the repeated-measures ANOVA, under the null-
hypothesis, it states that the algorithms are equivalenta s
rejection of this hypothesis implies the existence of diffe
ooss | [oooer | [mecose| leosz| [meoer]| €NCES @among the performance of all the algorithms studied.
pso=0.45| |pso=039| [pso=0.34| [pso=0.08| [eso=0.30| ~After applying Friedman test, a post-hoc test is used to find
whether the control algorithm presents statistical déferes
Fig. 4. Example trees. with regards to the remaining methods. The post-hoc method
selected is Benjamin-Hochberger method.

ga=0.54
pso=0.46 pso=0.48| pso=0.46} pso=0.39

3

%Disconn

of the v threshold better suited for the considered problerp. Preliminary tests
For SPLP we have chosen the following options: '

o The performance measurg, is the value of the SPLP’s
objective function.

o The fuzzy setenough have a trapezoidal membershi
function where(a, b, ¢, d) = (0,0.01, 1, 1).

e «is setto 0.75.

In order to graphically show the behavior of the different
tested strategies we have carried out some preliminarg test
using four instances of the test database. The graphicshwhic
Rilustrate the evolution of the 5 strategies are shown in Fig
5. These graphics show the average fitness obtained by each
strategy on 10 executions of 4000 fithess evaluations.

Different conclusions can be drawn from these graphs. In
V. COMPUTATIONAL EXPERIMENTS the first one (Fig. 5(a)), the robustness of the adaptivecsmr

In this section we perform some tests to assess the validf§n P& appreciated, because although it does not obtairste b
of PCAMA by comparing its results with those obtained byesults, it computes an average fitness value that is atd@ast
the different MAs that can be generated from the sequenti@' to that obtained by the best non-adaptive strategyeedd
combination of the single metaheuristics. Namely: PCAMA adaptability is able to exclude SA (that obtained the

. Genetic Algorithm + Tabu Search (GA+TS). worst performanc_:e) from the problem resolution. In Fig.)5(c

. . : . every non-adaptive MA obtains bad performances, whereas

« Genetic Algorithm + Simulated Annealing (GA+SA). CAMA A d solut babl it of it

« Particle Swarm Optimization + Tabu Search (PSO+TS£ computes good SOIUTions, probably as a resut ot its

« Particle Swarm Optimization + Simulated Annealin ptelligent choice O.f parameter v,alues. F_ma!ly n F.'g'ﬁ@d.
(PSO+SA). (d) non-cooperative strategies’ behavior is similar huisi

’ ) ) ) ) outperformed by the one showed by PCAMA. From these
_ In the following subsections we W|I_I explain the configurazagits we can anticipate the robustness of the approach, as
tion of the tests and the results obtained. independently from the results obtained by its components,
which may perform poorly, PCAMA always computes high
A. Configuration of the experiments quality solutions, comparable to that obtained by the best n

Concerning the system implementation, both coordinatgg""pt've MA, being in most cases better.

and optimization agents was programmed by using the Java .
language together with the CILib library [30], [31]. Regangi C. Comparisons
the fuzzy engine modeling the coordinator's TSK rules, the In this section we present the results obtained from the
Fuzzy Markup Language (FML) [27] was exploited. resolutions of the 96 previously defined SPLP instances. The
Tests have been conducted using a test database containgsglts are presented in Tables VII, VIII and IX. The first-col
96 instances that are characterized by different featuresumn shows a description of the instance, indicating the rermb
terms of number of customers, ratio between facilities amd customers, the ratio between facilities and customérs, i
customers, equal or different establishment costs folitiasi the costs of establishing different facilities are cons{&) or
connection percentage between facilities and customaeis, ulifferent (D), the ratio of disconnection between facigiand
form or normal distribution for unit transportation costs.  customers, and if the unit transportation costs are uniform
Both sequential MAs and PCAMA have solved each inJ) or normally distributed (N). The rest of columns indieat
stance 10 times using 40000 evaluations of the fithess furlee cost of the best solution obtained by each strategy.
tion. In PCAMA the cooperation was performed every 100 The results obtained are very interesting. First, PCAMA
evaluations. And every test was executed on an Intel coreBtains better results than every non adaptive MA for the
Quad 1.66Ghz with 2GB of Memory. 85.4% of instances. The statistical analysis highlightt th
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Fig. 5. Evolutions of the different strategies.
TABLE VI TABLE VIII
RESULTS(PARTI) RESULTS(PARTII)

description GA+TS GA+SA PSO+TS PSO+SA PCAMA description GA+TS GA+SA PSO+TS PSO+SA PCAMA

150, 0.33, C, 0.4, N| 19.0 250 195 30.8 18.6 1000, 0.02, C, 0.4, N| 1134 1136 1142 1139 1131

150, 0.33, C, 0.4, U| 5143 5162 5159 5230 5123 1000, 0.02, C, 0.4, U| 7875.3 78753 78753 78753 7875.3
150,0.33, C,0.5,N| 206 219 205 29.7 19.7 1000, 0.02, C, 0.5, N| 119.2 1188 1199 1189  118.0

150, 0.33, C, 0.5, U| 757.8 7584 7624 7725  757.6 1000, 0.02, C, 0.5, U| 9825.8 98258 9825.8 98258 9825.8
150,0.33,C, 0.6, N| 21.2 237 216 29.1 20.4 1000, 0.02, C, 0.6, N| 1158 1153 1162 1157 1145
150, 0.33, C, 0.6, U| 8340 839.1 8340 8565  834.0 1000, 0.02, C, 0.6, U| 13171.9 13171.9 13171.9 13171.9 13171.9
150,0.33, D, 0.4,N| 775 137.7 754  481.0  70.1 1000, 0.02, D, 0.4, N| 2282 2143 2354 2143 2163
150, 0.33, D, 0.4, U| 1562.0 1631.6 1568.7 19229 1546.2 1000, 0.02, D, 0.4, U| 8984.2 8984.2 8984.2 89842 8984.2

150, 0.33, D, 0.5, N| 118.6 1940 1259 4361  111.1 1000, 0.02, D, 0.5, N| 382.4 4102 3956 4408  351.0
150, 0.33, D, 0.5, U| 1556.7 1612.7 1552.6 1818.2 1549.5 1000, 0.02, D, 0.5, U| 11227.6 11227.6 11227.6 11227.6 11227.6

150, 0.33, D, 0.6, N| 170.8 232.8 1502 4357  147.3 1000, 0.02, D, 0.6, N| 523.8 489.9 529.8 4853 4887
150, 0.33, D, 0.6, U| 2071.8 21957 2073.9 23456 2068.2 1000, 0.02, D, 0.6, U| 13873.1 13873.1 13873.1 13873.1 13873.1

150, 0.66, C, 0.4, N| 39.9 418  41.1 50.0 15.3 1000, 0.33, C, 0.4, N| 200.2 2049 2175 2532  110.9

150, 0.66, C, 0.4, U| 397.1 401.7 4027  409.8 3715 1000, 0.33, C, 0.4, U| 1012.3 1047.8 1009.0 1072.2 925.7

150, 0.66, C, 0.5, N| 19.2 305  19.2 48.7 18.3 1000, 0.33, C, 0.5, N| 199.5 205.6 203.0 2493 1154

150, 0.66, C, 0.5, U| 398.7 4228 3986 4319  396.9 1000, 0.33, C, 0.5, U| 1211.6 1227.6 1209.0 1260.0 1121.1

150, 0.66, C, 0.6, N| 20.7 300 205 47.9 20.0 1000, 0.33,C, 0.6, N| 2358 237.7 258.8 2565 117.1

150, 0.66, C, 0.6, U| 5245 5249 5352 5454 4954 1000, 0.33, C, 0.6, U| 1353.7 1360.6 1365.1 1417.0 1245.9

150, 0.66, D, 0.4, N| 48.1  610.1  41.0 1403.0 44.1 1000, 0.33, D, 0.4, N| 34129 44743 35168 6587.4 170.8

150, 0.66, D, 0.4, U| 1170.0 1486.2 1169.3 20727 1164.4 1000, 0.33, D, 0.4, U| 4764.6 5595.1 4760.4 7346.9 3066.8

150, 0.66, D, 0.5, N| 57.2 5886 539 1568.6  55.6 1000, 0.33, D, 0.5, N| 34532 4302.4 33759 6393.8 162.4

150, 0.66, D, 0.5, U| 1363.3 1753.3 1371.0 23240 1350.7 1000, 0.33, D, 0.5, U| 5390.3 6580.4 5456.8 8118.6 3661.6

150, 0.66, D, 0.6, N| 85.1 4819 89.6 13028  79.0 1000, 0.33, D, 0.6, N| 3702.9 4265.4 35322 6526.0 168.0

150, 0.66, D, 0.6, U| 1499.9 1843.4 1496.4 23420 1499.6 1000, 0.33, D, 0.6, U| 5877.5 6991.0 6038.9 8326.4 4222.1
1000, 0.66, C, 0.4, N| 340.9 3436 407.7 4119 2527

1000, 0.66, C, 0.4, U| 988.9 996.0 988.7 10468 850.5

1000, 0.66, C, 0.5, N| 339.2 3358 399.3  403.4  246.2

1000, 0.66, C, 0.5, U| 1091.3 1104.4 1099.7 1160.1 952.6

i _ 1000, 0.66, C, 0.6, N| 3845 3815 4135 4119 247.4

PCAMA solutlor}s are better thf’m those computed by non 1000, 0.66, C, 0.6, U| 1179.7 1192.6 1200.4 1233.4 1027.8
adaptive strategies with a certainty of the 99.9%. Moreover 1000, 0.66, D, 0.4, N| 10553.8 10547.7 13683.3 137435 4085.5
i i ; 1000, 0.66, D, 0.4, U| 11689.0 11914.2 14456.5 14912.7 5379.3

by Comp"’.‘“”g PCAMA with a theoretlt?al MA that chooses, 1000, 0.66, D, 0.5, N| 10959.2 10827.2 13599.6 14037.5 4206.4
for each instance, the best non-adaptive strategy, ang&era 1000, 0.66, D, 0.5, U| 14536.3 14412.4 160142 15707.5 5776.0
; i 0 i i 1000, 0.66, D, 0.6, N| 10753.0 10751.8 13728.8 13616.9 3711.6
fitness improvement equals to the 14.13% is achieved. 1000 066, D 06, U| 116264 120779 148019 151594 60211

If we focus on the results obtained for instances of 1000
customers, we can observe the highest differences in perfor

mance among PCAMA and non-adaptive strategies. This coufdite similar.

be due to the difficulty of instances. Indeed, instances 6f 15
customers can be small and it is easier to obtain good results

even for non-adaptive strategies, on the other hand, iostan VI. CONCLUSIONS ANDFUTURE WORK

of 10000 customers have a low ratio between facilities andIn this paper we have proposed a parallel cooperative
customers, and thus also these instances become easydp sablaptive memetic algorithm, named PCAMA, aimed to solve
and for that reason the results obtained by every strategy aptimization problems by deciding, depending on the instan
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TABLE IX Lo .

RESULTS(PARTIII) known optimization problem, SPLP. First we executed the
construction process, showing how each phase was performed

description GA+TS GA+SA PSO+TS PSO+SA PCAMA and after that we carried out some computational tests iarord

10000, 0.01, C, 0.4,
10000, 0.01, C, 0.4,
10000, 0.01, C, 0.5,
10000, 0.01, C, 0.5,
10000, 0.01, C, 0.6,
10000, 0.01, C, 0.6,
10000, 0.01, D, 0.4,
10000, 0.01, D, 0.4,
10000, 0.01, D, 0.5,
10000, 0.01, D, 0.5,
10000, 0.01, D, 0.6,

1130.4 1146.4 1128.7 1165.0 1126.4 . .
17617.9 17617.9 17672.2 19288.8 17617.9 to check the effectiveness of the obtained strategy. Inethes

11351 1156.8 1137.95 11777 11355 tests the proposed strategy is compared with non adaptive
21940.9 21940.9 22007.6 24268.1 21940.9 . . L . . .
11313 11501 11318 1165.8 1126.3 memetic algorithms, obtaining very interesting resulesing

27926.6 27926.6 27980.1 314265 27926.6  confirmed its superiority by statistical tests which coneu
1236.9 1601.3 12159 2603.6 1220.6 . 0 . .

22279.4 22279.4 23882.4 23837.6 22279.4 with a 99.9% of Certalnty that its results are better.

12822 16238 12883 2430.9 1284.6

26827.2 26827.2 26920.0 291515 26827.2

1406.7 18006 13812 28119 14132

10000, 0.01, D, 0.6, U| 32700.4 32700.4 32780.6 35157.1 32700.4 REFERENCES

10000, 0.02, C, 0.4, N| 1140.8 1183.4 1139.3 12181 1135.0
10000, 0.02, C, 0.4, U| 10528.6 10528.6 10569.2 11715.4 10528.6

zCczCczczczczcz

[1] F. Glover, G.A. Kochenberger, Handbook of Metahewssti Kluwer

10000, 0.02, C. 05 N| 1146.2 11940 11433 12271 1146.7 Academic, Dordrecht, 2003. _

10000, 0.02, C, 0.5, U| 12439.2 12439.2 125115 14050.3 12439.2 [2] T. M. Chan, K. F. Man, K. S. Tang, S. Kwong, "A Jumping-Gene
10000, 0.02, C, 0.6, N| 1140.1 1186.1 1137.5 1216.2 11415 Paradigm for Optimizing Factory WLAN Networklhdustrial Informatics,
10000, 0.02, C, 0.6, U| 15110.7 15110.7 15171.7 17219.1 15110.7 IEEE Transactions gnvol.3, no.1, pp.33-43, Feb. 2007.

10000, 0.02, D, 0.4, N|  1205.7 3236.5 1199.4 46443 12133 [3] Lo, C.H., Fung, E.H.K., Wong, Y.K., , "Intelligent Autoaiic Fault
igggg' 8-83 B’ 8-;" H 11821271659 139127932-53 11211772-70 i%iigéﬁ igégsée Detection for Actuator Failures in Aircraft,Industrial Informatics, IEEE
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