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Abstract—Over recent years, there has been increasing interest
of the research community towards evolutionary algorithms, i.e.,
algorithms that exploit computational models of natural processes
to solve complex optimization problems. In spite of their ability
to explore promising regions of the search space, they present
two major drawbacks: 1) they can take a relatively long time
to locate the exact optimum and 2) may sometimes not find
the optimum with sufficient precision. Memetic Algorithms are
evolutionary algorithms inspired by both Darwinian princi ples
and Dawkins’ notion of a meme, able not only to converge
to high quality solutions, but also search more efficiently than
their conventional evolutionary counterparts. However, memetic
approaches are affected by several design issues related tothe
different choices that can be made to implement them. This paper
introduces a multi-agent based memetic algorithm which executes
in a parallel way different cooperating optimization strategies in
order to solve a given problem’s instance in an efficient way.
The algorithm adaptation is performed by jointly exploitin g a
knowledge extraction process together with a decision making
framework based on fuzzy methodologies. The effectivenessof
our approach is tested in several experiments in which our results
are compared with those obtained by non-adaptive memetic
algorithms. The superiority of the proposed strategy is manifest
in the majority of cases.

Index Terms—Adaptive Memetic Algorithms, Multi-Agent Sys-
tems, Data Mining, Fuzzy Logic

I. I NTRODUCTION

Optimization problems have focused the interest of the
research community for a long time. For that reason several
strategies have been developed to solve them in a reasonable
computational time and find solutions with a near optimum
quality. Among these strategies, metaheuristics play a funda-
mental role. Recent literature, e.g. [1][2][3], reveals a wide
variety of problems and methods that appear within this topic,
being one of the most studied Evolutionary Algorithms (EAs).

EAs are an interdisciplinary research field which takes its
inspiration from natural selection and survival of the fittest.
EAs operate on a population of potential solutions by applying
the principle of survival of the fittest in order to produce better
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and better approximations to a sub-optimal solution. At each
generation, a new set of approximations is created by selecting
individuals according to their level of fitness in the problem
domain and breeding them together using operators borrowed
from natural genetics. This process leads to the evolution of
individuals that are better suited to their environment than the
individuals that they were created from.

Nevertheless, although these algorithms have been used
to solve complex NP-complete problems [4], it is now well
established that they are not well suited to fine tuning search
in complex combinatorial spaces and, consequently, the hy-
bridization with other techniques may greatly improve their
efficiency [5],[6]. Memetic Algorithms (MAs) are an extension
of EAs that apply separate local optimization processes (hill
climbing, simulated annealing, tabu search, etc.) to refinein-
dividuals. These methods are inspired by models of adaptation
that combine the evolutionary adaptation of a population with
individual learning of its members. The choice of name is
inspired by Dawkins’ concept of a meme, which represents a
unit of cultural evolution that can exhibit local refinement[7].
In the context of optimization, a meme represents a learning
or development strategy. Thus, a MA exhibits the plasticityof
individuals that a genetic model fails to capture.

Our idea is to introduce a parallel cooperative adaptive
memetic algorithm able to decide, depending on the instance
being solved, how to combine and configure different evo-
lutionary and local search metaheuristics to improve overall
performance. In detail, the proposed strategy computes twose-
quential steps dealing respectively with evolutionary andlocal
methodologies. During the first step a collection of population
based methods cooperates to find a high quality solution that
is forwarded to the second step where a collection of local
search methods cooperates to improve it. The cooperation
is performed by exchanging solutions among metaheuristics
in precise moments and under certain conditions that are
controlled by a set of TSK fuzzy rules [26]. The fuzzy engine
uses knowledge obtained by a preliminary machine learning
process that analyzes the performances of different optimiza-
tion methods applied to well-defined problem’s instances.

The parallel and distributed nature of our approach is fully
suitable to be modeled using a multi-agent system where
software agents compute metaheuristics under the supervision
of a coordinator agent whose intelligence is given from the
aforementioned fuzzy rules and machine learning knowledge.

The paper is organized as follows, in Section II we present
some related work, in Section III we describe the adaptive
memetic algorithm and its developing process, next, in Sec-
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tion IV, we introduce a study case, Symple Plant Location
Problem, and produce an adaptive memetic algorithm to solve
it. In Section V we test the validity of the approach and finally,
in section VI we present the conclusions and future work.

II. RELATED WORK

Memetic algorithms are metaheuristics designed to find
solutions to complex and difficult optimization problems [28].
They are extensions of evolutionary algorithms that include
a stage of local search optimization as part of their search
strategy. MAs have arise as a response to the problems showed
by EAs, which generally suffer from slow convergence to
locate a precise enough solution because of their failure to
exploit local information. This often limits the practicality
of EAs on many large-scale real world problems where the
computational time is a crucial consideration.

From an optimization point of view [25], MAs have been
shown to be both more efficient (i.e., requiring orders of
magnitude fewer evaluations to find optima) and more effective
(i.e., identifying higher quality solutions) than traditional EAs
for some problem domains. As a result, MAs are gaining
wide acceptance, in particular, in well-known combinatorial
optimization problems where large instances have been solved
to optimality and where other metaheuristics have failed to
produce comparable results

However, despite the interesting results achieved by MAs,
the process of designing effective and efficient MAs still shows
some drawbacks. For instance the difficulty of fine tuning their
control parameters, which may require extensive tests, and
specifically, of finding a problem-specific meme that suits the
problem of interest [34]. In fact the choice of memes has been
shown to greatly influence the search performance of MAs [9],
[13], [20], [24], [29], [33], [35]. This evidence has led research
community to develop MAs capable of adapting their behavior
to the characteristics of the instance being solved, obtaining
third generation MAs or adaptive MAs.

From the different techniques included in adaptive MAs
three approaches stand out on account of their results and
popularity, namely hyperheuristics, co-evolution of memes and
meta-Lamarckian learning. Hyperheuristics [13], [24] follow
the idea of fusing a number of different memes together, so
that the actual meme applied may differ at each decision
point. Co-evolution of memes [33] introduces the idea of
including in the representation of each individual information
about what meme has to be used to perform local search
in the neighborhood of the solution. And meta-Lamarckian
learning [29] proposes adapting MA’s behavior by on line
choosing multiple memes during an MA search in the spirit
of Lamarckian learning.

In this paper we propose an adaptive MA diverse from
the previously explained, which uses knowledge automatically
extracted from precedent executions of the metaheuristicsin
order to decide how to combine them to obtain better results.

III. A PARALLEL COOPERATIVE ADAPTIVE MEMETIC

ALGORITHM

In this section a Parallel Cooperative Adaptive Memetic
Algorithm (PCAMA), based on a multi-agent architecture (see
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Fig. 1. Adaptive Memetic Architecture.

Fig. 1) is introduced. The proposed memetic algorithm is
computed in two steps, dealing respectively with evolutionary
and local methodologies. In the first step, a collection of
different evolutionary optimization strategies (GeneticAlgo-
rithm, Particle Swarm Optimization,. . .) are executed in a
parallel way in order to locate the best region of problem’s
search space. Successively a set of local search strategies(Tabu
Search, Simulated Annealing,. . .) simultaneously exploits this
region in order to find a high quality solution. In each step, the
optimization strategiesintelligently choosetheir configuration
parameters andcooperateby exchanging their solutions in
adaptiveway. The adaptability is achieved by means of a fuzzy
rule base able to evaluate information extracted by a prelimi-
nary machine learning approach [10] that ranks computational
performances related to evolutionary and local metaheuristics
applied to a given optimization problem.

As previously mentioned the architecture is based on a
multi-agent system where a set of so calledoptimization agents
computes the cooperating metaheuristics under the supervision
of a coordinator agentwhose intelligence is provided by the
aforementioned fuzzy rules and machine learning approach.

A. Agent-based Memetic Optimization

Let P be an optimization problem andq a given in-
stance ofP . As said above, the proposed memetic algorithm
tries to solveq by means of a collectionM = E ∪ L
of optimization strategies, whereE = {m1, m2, . . .} and
L = {m|E|+1, m|E|+2, . . . , m|M|} contain, respectively,|E|
evolutionary strategies and|L| local search methods. The
computation of metaheuristics inM is accomplished by two
sequential phases dealing respectively withE and L. Both
evolutionary and local strategies are computed through agent
paradigm and, in detail, by exploiting an agents collectionA =
{a1, a2, . . . , a|M|}, where the agents subset{a1, a2, . . . , a|E|}
is related to evolutionary strategies, whereas, the agentssubset
{a|E|+1, a|E|+2, . . . , a|M|} is related to local optimization
methods. The coordinator agentac is responsible of initiating
optimization process by parallel activating optimizationagents
and, in each phase, it coordinates the cooperation among
optimization agents by choosing their configuration parameters
and exchanging their solutions in adaptive way.

The adaptability ofac is performed by considering knowl-
edge coming from machine learning (see section III-B) coded
by means of a collection of fuzzy decision trees, namedT .
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Each branch from root to leaves of trees inT corresponds
to the characterization of a particular class of problem in-
stances, whereas, leaves belonging to these branches contain
information about suitability of strategies to solve this class.
Coordinator agent analyzes these trees in order to individuate
the collection of branches more similar to problem’s instance
q. In particular, trees analysis supports coordinator agentto
1) choose the best metaheuristic parameters and 2) rank the
metaheuristics suitability to solveq through numerical weights
in the range[0, 1]. Through weights analysis,ac may realize
that a metaheuristic is poorly performing and, consequently,
it may update its solutions by adding a set of better solutions
computed by other more suitable metaheuristics.

The cooperation is performed in a synchronous way, i.e. op-
timization agents evaluate,n times, the objective function then
they stop their computation in order to allow the coordinator
agent to collect their information and make decisions. After
that, each optimization agent continues exploring the search
space but executing coordinator agent’s orders.

To perform the communication betweenac and optimization
agents, a blackboard architecture will be used. Blackboards are
data structures usually used as general communication mech-
anisms. In our proposal each agent has an assigned space on
the blackboard where it periodicallywrites information about
its found solution. The coordinatorreadsthis information and
directs the search of each agent.

Fig. 2 shows the architecture of the proposed MA, while
Algotrithms 1 and 2 show respectively the pseudocode of
optimization and coordinator agents.

Fig. 2. Adaptive MA architechture.

Algorithm 1 : Optimization Agent’s Pseudocode.
Input: q: problem instance, mi: metaheuristic

assigned to agent,n: execution time
begin

read message messc from coordinator agent ac;
if messc is received then

replace poor solutions with solutions
contained in messc;

end
solution = compute metaheuristic mi

evaluating objective function n times;
write solution on blackboard;

end

Algorithm 2 : Coordinator Agent’s Pseudocode
Input: T: set of trees, n: execution time for each

ai, q: problem instance, M = E ∪ L: set of
metaheuristics

Output: solution: best solution found
begin

analyze T in order to select the best
parameter values for each metaheuristic in M;
while end condition is not satisfieddo

compute each ai related to E in a parallel
way;
exploit fuzzy rules, T and blackboard data
to select POOR, a set of agents
performing poorly;
foreach agenta in POOR do

compose a message messa containing a
collection of more suitable solutions;
send messa to a;

end
end
bestsolution = read the best solution from
blackboard;
use bestsolution as initial solution for agents
related to L;
while end condition is not satisfieddo

compute each ai related to L in a parallel
way;
exploit fuzzy rules, T and blackboard data
to select POOR, a set of agents
performing poorly;
foreach agenta in POOR do

compose a message messa containing a
collection of more suitable solutions;
send messa to a;

end
end
return best solution obtained;

end

A crucial question of the proposed architecture is how
to model theac’s intelligence to allow it to evaluate meta-
heuristics performances and control the cooperation among
optimization agents. This goal is achieved using a set of fuzzy
rules that exploit the knowledge obtained by machine learning.
More precisely,ac uses fuzzy inference to:

• choose the best metaheuristics’ parameters values;
• individuate when poor evolutionary metaheuristics have

to receive a collection of individuals from other strategies
that are showing a better behavior.

• individuate when local search methods have to recieve
solutions from other strategies showing a better behavior.

Coordinator agent implements first behavior by using a col-
lection of |M | fuzzy decision trees obtained through machine
learning. These trees analyzeq in order to infer - via the infer-
ence engine proposed on [21] - the most suitable parameters
values for each metaheuristic inM . Moreover, the coordinator
agent realizes the remaining two behaviors by considering two
additional trees coming from machine learning. In detail, these
trees analyzeq and respectively rank metaheuristics inE and
L, by returning a weights collectionΩ = {ωi, i = 1, . . . , |M |}

where ωi ∈ [0, 1] and
∑|E|

i=1 ωi =
∑|M|

i=|E|+1 ωi = 1; the
weightsωi, with i = 1, . . . , |E|, are the related toE, whereas,
the weightsωi with i = |E|+1, . . . , |M | are the related toL.

In short, each weightωi is associated with a metaheuristic
mi ∈ M and represents its suitability to solveq. More
precisely, letmi, mj ∈ E or mi, mj ∈ L be two optimization
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strategies thenωi > ωj implies that, according to previous
executions,ith metaheuristic obtains an overall better perfor-
mance than that obtained byjth metaheuristic.

In each phase, the coordinator agent uses a collection of
TSK fuzzy rules (|E|−1 for each metaheuristic) exploitingΩ
in order to derive the collection of poor strategies. For thesake
of simplicity the rules shown below are related to a strategy
mh ∈ E computed during the evolutionary phase (however
rules acting in local phase are equivalent):

if (ω1 · d1) is enoughthen poorness1 = 1
. . .
if (ωh−1 · dh−1) is enoughthen poornessh−1 = 1
if (ωh+1 · dh+1) is enoughthen poornessh+1 = 1
. . .
if (ω|E| · d|E|) is enoughthen poorness|E| = 1

where:
– mh is the metaheuristic being evaluated by the rule;
– di = (ξ(mi)− ξ(mh))/ max (ξ(mi), ξ(mh)), where

ξ is a measure of performance defined by the user;
– ωi ∈ [0, 1] is the weight ofmi;
– enough is a fuzzy set with trapezoidal membership

function defined by a quadruplet(a, b, c, d) and
whose universe of discourse is the range[0, 1].

– poornessi with i = 1, . . . , |E|, is a TSK variable
belonging to[0, 1]. Higher values ofpoornessi in-
dividuate a bad behavior ofmi. In this case,mi is
candidate to change its solution.

The main goal of each rule is to change the position
in the search space of a metaheuristic which is showing a
bad performance for a position near the solution of another
metaheuristic with a better behavior. Note that this rule tries
to solve the problem that appears in parallel strategies [14],
where unrestricted exchange of solutions favors a prematurely
converge to local optimums characterized by a low quality.

To perform the firing of the fuzzy rules a threshold value
α is used. In other words, only those rules whose activation
exceedsα are fired. In the event that more than one rule is
activated thenac applies all of them. In this way, it is able to
simultaneously adapt the behavior of several metaheuristics.

The metaheuristics’ solution changing is performed byac

by taking into account two different situations: 1) a single
antecedent clause of rule is fired or 2) many clauses are fired
during inference process. In detail, letS ⊂ M be the collection
of strategies related to fired clauses and letmh be the poor
metaheuristic that have to receive better solutions. If a single
clause is fired then|S| = 1 otherwise|S| > 1.

Then, during the evolutionary phase (mh ∈ E andS ⊂ E),
solutions exchange is performed as follows:

1) |S| = 1. A proportion of the worst individuals ofmh is
substituted by a set of solutions consisting of the best
members of the population of strategymk ∈ S. The
proportion is equals toωk, i.e. the suitability ofmk.

2) |S| > 1. A proportion of the worst individuals ofmh,
equals to

∑|S|
i=1 ωi, is replaced by a set of solutions

chosen by each metaheuristic using previous process.
In contrast, during local optimization phase (mh ∈ L and
S ⊂ L) the exchange is performed as follows:

• A solution “near” to the best solution obtained among
the meta-heuristicsmk ∈ S is sent tomh. Where “near”
means that the best solution is changed by applying,
⌈ 1

(2·ωk)⌉ times, a mutation operator that depends onP .

Example: Fuzzy Rules Firing ProcessIn this example we
suppose a minimization problem, two evolutionary metaheuris-
tics, GA and PSO (|E| = 2), the fuzzy setenough takes the
values[0, 0.1, 1, 1] and theα threshold is set to 0.5. Table I
shows three different configuration of the framework.

TABLE I
SYSTEM’ S STATE

GA PSO GA PSO GA PSO
weight 0.43 0.57 0.68 0.32 0.55 0.45
fitness 178 154 178 154 178 154

activation 0.77 -0.58 0.43 -0.91 0.61 -0.74
change yes no no no yes no

In the first case, according to the weights obtained from the
tree, PSO has a better overall performance (a higher weight
than GA) and also a better solution. Whenac evaluates the
rule for GA, it obtains an activation value of0.77 (> α),
which means that PSO has to send some individuals to GA.
On the other hand, the rule for PSO is not fired. In the second
example, GA has a better overall performance but the current
solutions remain the same. In this case, the rule is not fired for
GA, although its current solution is worse than that of PSO.
Indeed, according to the weights, GA is much better than PSO
for this specific instance. In this way, a premature convergence
to local solutions of low quality is avoided. The last example
is similar to the previous one but the difference of weights is
not as high, and thus the rule is fired for GA, because we are
more confident of the performance of PSO.

B. The Knowledge Extraction Process

As previously mentioned the adaptability of the proposed
MA is provided by the knowledge obtained through an ex-
traction process formally introduced in this section. Without
loss of generality, letP be a maximization problem,I a
training instances set ofP characterized by different prob-
lem featuresF = {f1, f2, . . . , fo}, and M = E ∪ L a
collection of |E| evolutionary strategies and|L| local search
optimization methods. The aim of the knowledge extraction
process is to evaluate the performances of metaheuristics in
M when applied to instances inI. This process returns a set
T = {t1, t2, . . . , t|M|} ∪ {tE , tL} containing|M | + 2 fuzzy
decision trees:tE andtL respectively model the suitability of
the strategies inE and L by providing the aforementioned
weightsΩ = {ωi, i = 1, . . . , |M |} and, on the other hand,
each treeti, with i = 1, . . . , |M |, provides the most suitable
parameters choice for metaheuristicmi.

The Knowledge extraction process is subdivided in two
subphases, Fig. 1, Data Preparation and Data Mining.

1) Data Preparation: In this phase, metaheuristics inM
are applied to instances inI in order to build a collection
of databasesDB, named refined databases. The obtaining of
these databases is carried out in two steps. First, information
about the performance of metaheuristics inM is stored in a
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set of so calledraw databases. Successively, data contained in
raw databases are processed to computeDB, which contains
additional information useful to extract significant knowledge
during data mining.

In particular, the obtaining of the raw databases is car-
ried out in the following way. Letmi be a generic meta-
heuristic in M whose computation depends upon a collec-
tion of parametersPi = {p1

i , p
2
i , . . . , p

ni

i } and let Vi,j =
{v1

i,j , v
2
i,j , . . . , v

si,j

i,j }, with j = 1, . . . , ni, be a finite collec-
tion of si,j suitable values forpj

i , the jth parameter ofith

metaheuristic. Consequently, ifci =
∏ni

l=1 |Vi,l| is the number
of combinations of parameters values (i.e. the cardinalityof
product setVi,1 × Vi,2 × . . . × Vi,ni

) then data preparation
phase solves each instanceq ∈ I by applying,r = ci ·k times,
the metaheuristicmi; k is theiterative factor, i.e., a predefined
value used to obtain more accurate performance estimations.
These performance estimations are utilized to fillr · |I| rows
into the database related to metaheuristicmi. In particular, a
raw database row contains:

• a description of the specific instance of the problem;
• the values of the parameters used by each metaheuristic;
• the final solution obtained.

Table II shows database entries related tomi, and the follow-
ing example illustrates the application of this step.

Example Let mi be a GA then parameters sets could be:

Pi = {p1
i , p

2
i , p

3
i |p

1
i , p

2
i ∈ [0, 1] andp3

i ∈ N}
Vi,1 = {0.1, 0.3, 0.7}
Vi,2 = {0.01, 0.1, 0.3}

where p1
i could be the crossover probability andp2

i the
mutation probability. Then, the number of parameters values
combinations will be|Vi,1| · |Vi,2| = 9. Now, if k = 10
then data preparation process solves each instanceq ∈ I by
applying,k ·9 = 90 times, the genetic algorithm. The collected
data fill 90 · |I| rows in genetic algorithm’s raw database.

Next step is to analyze and refine raw databases in order
to computeDB = {dm1 , dm2 , . . . , dm|M|

, dE , dL} where
|DB| = |M | + 2. Refined databases are smaller than raw
databases and contain additional information useful to extract
significant knowledge during data mining. In detail, eachdmi

contains information about the most appropriate combinations
of parameters values used bymi to solve instances inI. On
the other hand,dE and dL respectively contain information
about the weightsΩ associated to metaheuristics inE andL.

In order to build databases in{dmi
|i = 1, . . . , |M |}, for

each metaheuristicmi ∈ M its raw database is processed as
follows:

1) for each instanceqa ∈ I and for each parameters
combinationpci

b ∈ Vi,1×Vi,2× . . .×V ni

i , b = 1, . . . , ci,
the average fitness value is calculated:

avga,i
b =

∑b·k
u=1+(b−1)·k (fitau)

k

2) for each instanceqa ∈ I, let us definepca,i
best ∈ {pci

b|b =
1, . . . , ci} as the parameter combination computing the
best average fitness value,maxci

b=1 avga,i
b ;

3) refined databasedmi
is updated with a new entry

containing the description of instanceqa and the best
parameter combination, i.e,(fa

1 , fa
2 , . . . , fa

o ) andpca,i
best.

The remaining two databases are directly related to evolution-
ary strategies inE and local search methods inL. In detail,
the refined databasedE is processed as follows:

1) for each metaheuristicmi ∈ E, for each instanceqa ∈ I
and for each parameters combinationpci

b ∈ Vi,1×Vi,2×
. . . × Vi,ni

, the average fitness value is computed:

avga,i
b =

∑b·k
u=1+(b−1)·k (fitau)

k

2) for eachmi ∈ E and qa ∈ I, let us select the best
average fitness valuefita,i

best = maxb·k
u=1+(b−1)·k (fitau)

and compute themetaheuristic suitability weightas:

ωi =
fita,i

best
∑|E|

l=1 fita,l
best

3) for eachmi ∈ E and for each instanceqa ∈ I the
refined database is updated with a new entry containing
the description ofqa and the metaheuristic suitability
weight, i.e,(fa

1 , fa
2 , . . . , fa

o ) andωi.

DatabasedL is analogously built by replacing evolutionary
strategies inE with local search methods inL. Table III shows
refinement processes.

Refined databases will favor the application of data mining
phase in computational efficient way. Indeed, Data Preparation
applies metaheuristics inM in order to create a collection of
|M | raw databases containing|I| · ci · k rows. The refinement
step builds|M | + 2 refined databases where databases in the
subset{dmi

|i = 1, . . . , |M |} contain |I| entries, whereas,
databasesdL anddE contain, respectively,|I| · |L| and|I| · |E|
entries. Consequently, a generic data mining technique ana-
lyzes

∑|M|
i=1 |I| · ci · k data samples to extract knowledge from

raw database, whereas, the same technique analyzes2·|M |·|I|
data samples to extract knowledge from refined databases. Be-
cause in real casesci·k >> 2 ⇒ 2·|M |·|I| <

∑|M|
i=1 |I| · ci · k,

our data mining approach, based on refined databases, is more
efficient than other approaches working on raw data.

2) Data Mining: Once gathered performance information
and collected it through refined databasesDB, the data mining
phase extracts the collection of knowledge modelsT .

Our data mining approach exploits fuzzy decision trees
(FDT) [21] to extract knowledge fromDB and build the
collection of treesT = {t1, t2, . . . , t|M|}∪{t

E, tL}. Two main
reasons have guided this choice. First FDT interpretability,
decision trees stand out on account of their simplicity and read-
ability, which enables a full understanding of the knowledge
that guidesac. Second, their fuzziness, which can improve
inference performance by means of approximate reasoning and
provide an easy way to obtain the weightsΩ.

Before continuing we should explaing FDT construction
and inference processes. FDT construction considers instances
from a learning database. Each instance is composed by a
collection of attributesA where a given attribute,c ∈ A,
represents theclass i.e. an attribute used to locate instances
in groups. Then, an FDT codes a constraints collection that
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TABLE II
DATABASE RELATED TO METAHEURISTICmi . FOR EACH INSTANCEq ∈ I , CHARACTERIZED BY ATTRIBUTES{f1, f2, . . . , fo}, mi IS APPLIEDk TIMES

FOR EACH COMBINATION OF PARAMETER VALUES RELATED TO{p1

i , p2

i , . . . , p
ni
i }. fituz REPRESENTS THEzth FITNESS VALUE OBTAINED BY APPLYING

mi TO uth INSTANCE IN I .

Attributes Parameters Final
f1 f2 . . . fo p1

i p2
i . . . p

ni
i

Solution

Instance Par. It.
Comb.

q1

1 f1
1 f1

2 . . . f1
o v1

i,1 v1
i,2 . . . v1

i,ni
fit11

2 f1
1 f1

2 . . . f1
o v1

i,1 v1
i,2 . . . v1

i,ni
fit12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

k f1
1 f1

2 . . . f1
o v1

i,1 v1
i,2 . . . v1

i,ni
fit1k

1 f1
1 f1

2 . . . f1
o v1

i,1 v1
i,2 . . . v2

i,ni
fit1k+1

2 f1
1 f1

2 . . . f1
o v1

i,1 v1
i,2 . . . v2

i,ni
fit1k+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2

k f1
1 f1

2 . . . f1
o v1

i,1 v1
i,2 . . . v2

i,ni
fit1k+k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 f1
1 f1

2 . . . f1
o v

si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

fit1(ci−1)·k+1

2 f1
1 f1

2 . . . f1
o v

si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

fit1(ci−1)·k+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ci

k f1
1 f1

2 . . . f1
o v

si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

fit1ci·k

1 f2
1 f2

2 . . . f2
o v1

i,1 v1
i,2 . . . v1

i,ni
fit21

2 f2
1 f2

2 . . . f2
o v1

i,1 v1
i,2 . . . v1

i,ni
fit22

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

k f2
1 f2

2 . . . f2
o v1

i,1 v1
i,2 . . . v1

i,ni
fit2k

1 f2
1 f2

2 . . . f2
o v1

i,1 v1
i,2 . . . v2

i,ni
fit2k+1

2 f2
1 f2

2 . . . f2
o v1

i,1 v1
i,2 . . . v2

i,ni
fit2k+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2

k f2
1 f2

2 . . . f2
o v1

i,1 v1
i,2 . . . v2

i,ni
fit2k+k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 f2
1 f2

2 . . . f2
o v

si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

fit2(ci−1)·k+1

2 f2
1 f2

2 . . . f2
o v

si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

fit2(ci−1)·k+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q2

ci

k f2
1 f2

2 . . . f2
o v

si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

fit2ci·k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 f
|I|
1 f

|I|
2 . . . f |I|

o v1
i,1 v1

i,2 . . . v1
i,ni

fit
|I|
1

2 f
|I|
1 f

|I|
2 . . . f |I|

o v1
i,1 v1

i,2 . . . v1
i,ni

fit
|I|
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

k f
|I|
1 f

|I|
2 . . . f |I|

o v1
i,1 v1

i,2 . . . v1
i,ni

fit
|I|
k

1 f
|I|
1 f

|I|
2 . . . f |I|

o v1
i,1 v1

i,2 . . . v2
i,ni

fit
|I|
k+1

2 f
|I|
1 f

|I|
2 . . . f |I|

o v1
i,1 v1

i,2 . . . v2
i,ni

fit
|I|
k+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

k f
|I|
1 f

|I|
2 . . . f |I|

o v1
i,1 v1

i,2 . . . v2
i,ni

fit
|I|
k+k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 f
|I|
1 f

|I|
2 . . . f |I|

o v
si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

fit
|I|

(ci−1)·k+1

2 f
|I|
1 f

|I|
2 . . . f |I|

o v
si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

fit
|I|

(ci−1)·k+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q|I|

ci

k f
|I|
1 f

|I|
2 . . . f |I|

o v
si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

fit
|I|
ci·k

Raw Database Entries

individuates groups defined byc. Learning process is shown
in Algorithm 3 where the stop condition is defined by the
first condition satisfied among the following: (1) the algorithm
generates a pure node - a node where all instances are from
the same class -, (2)M is empty, (3) the algorithm generates
a node containing the minimum number of instances allowed.
Each leafl stores, for each classc, the number of instances,
νl

c, that satisfy its branch’s constraints (totally or partially)
during learning process. FDTs can deal with both numerical
and nominal attributes, but when treating numerical valuesa
previous fuzzy partition is needed. This fuzzy partition can be

given by the user or obtained by means of an automatic fuzzy
partition method, which commonly obtains better results. The
chosen FDT has associated a fuzzy partition algorithm [22]
that will be used to obtain the fuzzy partition.

On the other hand, given an instanceq, inference is per-
formed in the following way:

1) for each leaf, calculateq’s membershipµl(q), as the
satisfaction degree of its branch’s constraints.

2) for each class return a membership valuemvc(q) =
∑number leaves

l=1 µl(q) ·
νl

c
P

number class
i=1 νl

i

.

If only one class is needed, then it should be chosen that
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TABLE III
FROM RAW DATABASE TO REFINED DATABASES ENTRIES.

Attributes Parameters Final
f1 f2 . . . fo p1

i p2
i . . . p

ni
i

Solution

Instance Par. It.
Comb.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

qa

1 fa
1 fa

2 . . . fa
o v1

i,1 v1
i,2 . . . v1

i,ni
fita

1

2 fa
1 fa

2 . . . fa
o v1

i,1 v1
i,2 . . . v1

i,ni
fita

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

k fa
1 fa

2 . . . fa
o v1

i,1 v1
i,2 . . . v1

i,ni
fita

k

1 fa
1 fa

2 . . . fa
o v1

i,1 v1
i,2 . . . v2

i,ni
fita

k+1

2 fa
1 fa

2 . . . fa
o v1

i,1 v1
i,2 . . . v2

i,ni
fita

k+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2

k fa
1 fa

2 . . . fa
o v1

i,1 v1
i,2 . . . v2

i,ni
fita

k+k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 fa
1 fa

2 . . . fa
o v

si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

fita
(ci−1)·k+1

2 fa
1 fa

2 . . . fa
o v

si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

fita
(ci−1)·k+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ci

k fa
1 fa

2 . . . fa
o v

si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

fita
ci·k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

↓ ↓ Fitness Average Computation ↓ ↓

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 avg. fa
1 fa

2 . . . fa
o v1

i,1 v1
i,2 . . . v1

i,ni
avg

a,i
1

2 avg. fa
1 fa

2 . . . fa
o v1

i,1 v1
i,2 . . . v2

i,ni
avg

a,i
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
qa

ci avg. fa
1 fa

2 . . . fa
o v

si,1
i,1 v

si,2
i,2 . . . v

si,ni
i,ni

avga,i
ci

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

↓ ↓ Database Entry Creation ↓ ↓

fa
1 fa

2 . . . fa
o pc

a,i

best
fa
1 fa

2 . . . fa
o ωi

Entry of Database dmi
Entry of Database dL or dE

Algorithm 3 : FDT Construction Pseudocode
Input: E: training instances, Fuzzy Partition:

attributes partitions in fuzzy sets
Output: t: FDT obtained
begin

Create root node, containing instances in E;
Obtain M, the set of attributes that describe
E and where numeric attributes are
discretized using Fuzzy Partition;
Nodes_without_expand = {root node};
while end condition is not satisfieddo

N = next(Nodes_without_expand);
foreach attribute m ∈ M do

Calculate information gain in M taking
into account the membership of each
instance e to node N;

end
Choose mpart the attribute with maximum
gain;
Divide N in subnodes according to the
possible outputs of mpart;
Add to Nodes_without_expand the subnodes
of N;
Eliminate mpart of M;

end
end

with a highermvc(q).

In our case, classes are the best parameter combination and
the weight and branch constraints are used to analyze instance
features. A summary of data mining phase is shown in Fig. 3.

...

...

...
...

...
...

...

...

...

Attributes

c

F
u
z
z
y
 P
a
rtitio

n
s

fc

fd

fe

ωi = 0.3 

ωj = 0.7

ωi = 0.9 

ωj = 0.1

ωi = 0.8 

ωj = 0.2

ωi = 0.6 

ωj = 0.4

ωi = 0.5 

ωj = 0.5

F
u
z
z
y
 D
e
c
is
io
n
 T
re
e

ωi = 0.2 

ωj = 0.8

ωi = 0.3 

ωj = 0.7

Fig. 3. Data Mining Phase.

Finally, once this phase is finished, the collectionT of FDTs
that modelsac’s knowledge, is obtained, and the coordinator
is ready to control the execution of the optimization agents.
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IV. A C ASE STUDY: SIMPLE PLANT LOCATION PROBLEM

In order to test and validate the feasibility of our proposal, in
this section PCAMA has been applied to a concrete problem:
the Simple Plant Location Problem (SPLP).

A. Simple Plant Location Problem

The simple plant location problem (SPLP) is a well-known
combinatorial optimization problem in which some plants
or facilities must be chosen among a set of candidates and
each of the customers from a given set must be allocated
to one of them in such a way that the total cost (location
plus allocation) is minimum. Many papers on this problem
can be found in the literature (e.g. [11], [12], [17], [18]).
SPLP can be formally defined as follows: Consider a set
I = {1, . . . , m} of candidate sites for facility location, and
a setJ = {1, . . . , n} of customers. Each facilityi ∈ I has
a fixed costfi. Every customerj ∈ J has a demandbj, and
cij is the unit transportation cost from facilityi to customer
j. Without a loss of generality we can normalize the customer
demands tobj = 1. It has to be decided: 1) facilities to be
established and 2) quantities to be supplied from facilityi to
customerj, such that the total cost is minimized.

Mathematically, the SPLP is formulated as follows:

min





m
∑

i=1

n
∑

j=1

cijxij +
∑

i=1

fiyi





Subject to:
m

∑

i=1

xij = 1, ∀j ∈ J

0 ≤ xij ≤ yi ∈ {0, 1} , ∀i ∈ I and∀j ∈ J

where

• xij represents the quantity supplied from facilityi to
customerj;

• yi indicates whether facilityi is established or not.

Let the set of established facilities beEF = {i|yi = 1} with
cardinalitye = |EF |.

As far as computational complexity is concerned, although
some special cases of SPLP are solvable in polynomial time,
[8], [15], [19], [32], in general, it is a NP-hard problem [23].

In order to apply PCAMA on SPLP, it is crucial to deal
with a large number of problem’s instances characterized by
different features. The choice of problem’s instances greatly
influences the behaviour of the knowledge extraction process
and, consequently, PCAMA’s performance. For that reason we
have identified some instance’s features that may influence the
behavior and performance of different solving strategies:

• Number of customers.
• Ratio between facilities and customers.
• Equal or different establishment costs for facilities.
• Connection percentage between facilities and customers.
• Uniform or normal distribution for unit transportation

costs.

Through this characterization different SPLP’s instances,
that highlight distinct problem features.

B. Construction of the Memetic Algorithm

Hereafter PCAMA configuration process is presented.
1) Metaheuristics chosen:A crucial issue in the design of

PCAMA is the choice of the metaheuristics that will made up
the system. For the problem being considered we have chosen
four strategies, two evolutionary metaheuristics, a Genetic
Algorithm (GA) and a Particle Swarm Optimization (PSO),
and two local search metaheuristics, a Tabu Search (TS) and
a Simulated Annealing (SA).

2) Applying the Knowledge Extraction Process:The first
step of PCAMA is the acquisition of the knowledge that
will support coordinator’s decisions by applying the aforemen-
tioned knowledge extraction process.

The first phase, Data Preparation, required the generation
of 192 instances varying on the previously mentioned SPLP’s
features. Each generated instance was solved 5 times by using
GA, PSO, TS and SA with different parameters combinations.
Regarding GA different alternatives were chosen for selection
strategy, mutation probability and cross probability. Concern-
ing PSO different values were chosen for topology, and pa-
rameters that control global memory and local memory. With
regard to TS, different values for tabu list size and long term
memory are used. Finally, with respect to SA, different values
were used for cooling schedule and percentage of neighbors to
be considered. The information obtained from these executions
was preprocessed to obtain the refined databases. Portions of
the different refined databases can be seen on tables IV,V,VI.

TABLE IV
DATABASE DE FOR POPULATION-BASED METAHEURISTICS

custs. rFC fixedC %Conn. gauss MH ω

1000 0.015 true 0.445 true GA 0.32
1000 0.015 true 0.445 true PSO 0.68
10000 0.031 false 0.003 false GA 0.63
10000 0.031 false 0.003 false PSO 0.27
... ... ... ... ... ... ...

TABLE V
DATABASE DL FOR TRAJECTORY-BASED METAHEURISTICS

custs. rFC fixedC %Conn. gauss MH ω

1000 0.015 true 0.445 true TS 0.56
1000 0.015 true 0.445 true SA 0.44
10000 0.031 false 0.003 false TS 0.72
10000 0.031 false 0.003 false SA 0.28

. . . . . . . . . . . . . . . . . . . . .

TABLE VI
DATABASE Dmi

RELATED TO THE GENETIC ALGORITHM PARAMETERS

custs. rFC fixedC %Conn. gauss param1 param2
150 1 false 0.748 true 0.001 0.6
1000 1 true 0.415 true 0.01 0.6
. . . . . . . . . . . . . . . . . . . . .

After the obtaining of these databases, Data Mining phase
was applied in order to obtain the FDTs that configure the
coordinator agent. An example FDT can be seen on Fig. 4

In order to complete the coordinator’s intelligence definition
it is necessary to define the measure of performanceξ used
by the TSK rules, the fuzzy setenough and choose the value
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Fig. 4. Example trees.

of the α threshold better suited for the considered problem.
For SPLP we have chosen the following options:

• The performance measure,ξ, is the value of the SPLP’s
objective function.

• The fuzzy setenough have a trapezoidal membership
function where(a, b, c, d) = (0, 0.01, 1, 1).

• α is set to 0.75.

V. COMPUTATIONAL EXPERIMENTS

In this section we perform some tests to assess the validity
of PCAMA by comparing its results with those obtained by
the different MAs that can be generated from the sequential
combination of the single metaheuristics. Namely:

• Genetic Algorithm + Tabu Search (GA+TS).
• Genetic Algorithm + Simulated Annealing (GA+SA).
• Particle Swarm Optimization + Tabu Search (PSO+TS).
• Particle Swarm Optimization + Simulated Annealing

(PSO+SA).

In the following subsections we will explain the configura-
tion of the tests and the results obtained.

A. Configuration of the experiments

Concerning the system implementation, both coordinator
and optimization agents was programmed by using the Java
language together with the CILib library [30], [31]. Regarding
the fuzzy engine modeling the coordinator’s TSK rules, the
Fuzzy Markup Language (FML) [27] was exploited.

Tests have been conducted using a test database containing
96 instances that are characterized by different features in
terms of number of customers, ratio between facilities and
customers, equal or different establishment costs for facilities,
connection percentage between facilities and customers, uni-
form or normal distribution for unit transportation costs.

Both sequential MAs and PCAMA have solved each in-
stance 10 times using 40000 evaluations of the fitness func-
tion. In PCAMA the cooperation was performed every 100
evaluations. And every test was executed on an Intel core2
Quad 1.66Ghz with 2GB of Memory.

In order to validate the results obtained, some statistical
techniques using non parametric tests [16] have been consid-
ered. Specifically, the test used to compare two memetic strate-
gies is Wilcoxon signed-rank test, which is a non-parametric
statistical procedure for performing pairwise comparisons be-
tween two algorithms analogous to paired t-test. But when
more than two methods need to be compared Wilcoxon tests
are not enough and a different type of test is needed, in this
case we will use Friedman test which is a non-parametric test
equivalent to the repeated-measures ANOVA, under the null-
hypothesis, it states that the algorithms are equivalent, so a
rejection of this hypothesis implies the existence of differ-
ences among the performance of all the algorithms studied.
After applying Friedman test, a post-hoc test is used to find
whether the control algorithm presents statistical differences
with regards to the remaining methods. The post-hoc method
selected is Benjamin-Hochberger method.

B. Preliminary tests

In order to graphically show the behavior of the different
tested strategies we have carried out some preliminary tests
using four instances of the test database. The graphics which
illustrate the evolution of the 5 strategies are shown in Fig.
5. These graphics show the average fitness obtained by each
strategy on 10 executions of 4000 fitness evaluations.

Different conclusions can be drawn from these graphs. In
the first one (Fig. 5(a)), the robustness of the adaptive approach
can be appreciated, because although it does not obtain the best
results, it computes an average fitness value that is at leastsim-
ilar to that obtained by the best non-adaptive strategy. Indeed
PCAMA adaptability is able to exclude SA (that obtained the
worst performance) from the problem resolution. In Fig. 5(c),
every non-adaptive MA obtains bad performances, whereas
PCAMA computes good solutions, probably as a result of its
intelligent choice of parameter values. Finally in Fig. 5(b) and
5(d) non-cooperative strategies’ behavior is similar but it is
outperformed by the one showed by PCAMA. From these
results we can anticipate the robustness of the approach, as
independently from the results obtained by its components,
which may perform poorly, PCAMA always computes high
quality solutions, comparable to that obtained by the best non-
adaptive MA, being in most cases better.

C. Comparisons

In this section we present the results obtained from the
resolutions of the 96 previously defined SPLP instances. The
results are presented in Tables VII, VIII and IX. The first col-
umn shows a description of the instance, indicating the number
of customers, the ratio between facilities and customers, if
the costs of establishing different facilities are constant (C) or
different (D), the ratio of disconnection between facilities and
customers, and if the unit transportation costs are uniformly
(U) or normally distributed (N). The rest of columns indicate
the cost of the best solution obtained by each strategy.

The results obtained are very interesting. First, PCAMA
obtains better results than every non adaptive MA for the
85.4% of instances. The statistical analysis highlights that
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PCAMA

PSO + SA

PSO + TS

GA + SA

GA + TS

(a) (b)

(d)(c)

Fig. 5. Evolutions of the different strategies.

TABLE VII
RESULTS(PART I)

description GA+TS GA+SA PSO+TS PSO+SA PCAMA
150, 0.33, C, 0.4, N 19.0 25.0 19.5 30.8 18.6
150, 0.33, C, 0.4, U 514.3 516.2 515.9 523.0 512.3
150, 0.33, C, 0.5, N 20.6 21.9 20.5 29.7 19.7
150, 0.33, C, 0.5, U 757.8 758.4 762.4 772.5 757.6
150, 0.33, C, 0.6, N 21.2 23.7 21.6 29.1 20.4
150, 0.33, C, 0.6, U 834.0 839.1 834.0 856.5 834.0
150, 0.33, D, 0.4, N 77.5 137.7 75.4 481.0 70.1
150, 0.33, D, 0.4, U 1562.0 1631.6 1568.7 1922.9 1546.2
150, 0.33, D, 0.5, N 118.6 194.0 125.9 436.1 111.1
150, 0.33, D, 0.5, U 1556.7 1612.7 1552.6 1818.2 1549.5
150, 0.33, D, 0.6, N 170.8 232.8 150.2 435.7 147.3
150, 0.33, D, 0.6, U 2071.8 2195.7 2073.9 2345.6 2068.2
150, 0.66, C, 0.4, N 39.9 41.8 41.1 50.0 15.3
150, 0.66, C, 0.4, U 397.1 401.7 402.7 409.8 371.5
150, 0.66, C, 0.5, N 19.2 30.5 19.2 48.7 18.3
150, 0.66, C, 0.5, U 398.7 422.8 398.6 431.9 396.9
150, 0.66, C, 0.6, N 20.7 30.0 20.5 47.9 20.0
150, 0.66, C, 0.6, U 524.5 524.9 535.2 545.4 495.4
150, 0.66, D, 0.4, N 48.1 610.1 41.0 1403.0 44.1
150, 0.66, D, 0.4, U 1170.0 1486.2 1169.3 2072.7 1164.4
150, 0.66, D, 0.5, N 57.2 588.6 53.9 1568.6 55.6
150, 0.66, D, 0.5, U 1363.3 1753.3 1371.0 2324.0 1350.7
150, 0.66, D, 0.6, N 85.1 481.9 89.6 1302.8 79.0
150, 0.66, D, 0.6, U 1499.9 1843.4 1496.4 2342.0 1499.6

PCAMA solutions are better than those computed by non-
adaptive strategies with a certainty of the 99.9%. Moreover,
by comparing PCAMA with a theoretical MA that chooses,
for each instance, the best non-adaptive strategy, an average
fitness improvement equals to the 14.13% is achieved.

If we focus on the results obtained for instances of 1000
customers, we can observe the highest differences in perfor-
mance among PCAMA and non-adaptive strategies. This could
be due to the difficulty of instances. Indeed, instances of 150
customers can be small and it is easier to obtain good results
even for non-adaptive strategies, on the other hand, instances
of 10000 customers have a low ratio between facilities and
customers, and thus also these instances become easy to solve,
and for that reason the results obtained by every strategy are

TABLE VIII
RESULTS(PART II)

description GA+TS GA+SA PSO+TS PSO+SA PCAMA
1000, 0.02, C, 0.4, N 113.4 113.6 114.2 113.9 113.1
1000, 0.02, C, 0.4, U 7875.3 7875.3 7875.3 7875.3 7875.3
1000, 0.02, C, 0.5, N 119.2 118.8 119.9 118.9 118.0
1000, 0.02, C, 0.5, U 9825.8 9825.8 9825.8 9825.8 9825.8
1000, 0.02, C, 0.6, N 115.8 115.3 116.2 115.7 114.5
1000, 0.02, C, 0.6, U 13171.9 13171.9 13171.9 13171.9 13171.9
1000, 0.02, D, 0.4, N 228.2 214.3 235.4 214.3 216.3
1000, 0.02, D, 0.4, U 8984.2 8984.2 8984.2 8984.2 8984.2
1000, 0.02, D, 0.5, N 382.4 410.2 395.6 440.8 351.0
1000, 0.02, D, 0.5, U 11227.6 11227.6 11227.6 11227.6 11227.6
1000, 0.02, D, 0.6, N 523.8 489.9 529.8 485.3 488.7
1000, 0.02, D, 0.6, U 13873.1 13873.1 13873.1 13873.1 13873.1
1000, 0.33, C, 0.4, N 200.2 204.9 217.5 253.2 110.9
1000, 0.33, C, 0.4, U 1012.3 1047.8 1009.0 1072.2 925.7
1000, 0.33, C, 0.5, N 199.5 205.6 203.0 249.3 115.4
1000, 0.33, C, 0.5, U 1211.6 1227.6 1209.0 1260.0 1121.1
1000, 0.33, C, 0.6, N 235.8 237.7 258.8 256.5 117.1
1000, 0.33, C, 0.6, U 1353.7 1360.6 1365.1 1417.0 1245.9
1000, 0.33, D, 0.4, N 3412.9 4474.3 3516.8 6587.4 170.8
1000, 0.33, D, 0.4, U 4764.6 5595.1 4760.4 7346.9 3066.8
1000, 0.33, D, 0.5, N 3453.2 4302.4 3375.9 6393.8 162.4
1000, 0.33, D, 0.5, U 5390.3 6580.4 5456.8 8118.6 3661.6
1000, 0.33, D, 0.6, N 3702.9 4265.4 3532.2 6526.0 168.0
1000, 0.33, D, 0.6, U 5877.5 6991.0 6038.9 8326.4 4222.1
1000, 0.66, C, 0.4, N 340.9 343.6 407.7 411.9 252.7
1000, 0.66, C, 0.4, U 988.9 996.0 988.7 1046.8 850.5
1000, 0.66, C, 0.5, N 339.2 335.8 399.3 403.4 246.2
1000, 0.66, C, 0.5, U 1091.3 1104.4 1099.7 1160.1 952.6
1000, 0.66, C, 0.6, N 384.5 381.5 413.5 411.9 247.4
1000, 0.66, C, 0.6, U 1179.7 1192.6 1200.4 1233.4 1027.8
1000, 0.66, D, 0.4, N 10553.8 10547.7 13683.3 13743.5 4085.5
1000, 0.66, D, 0.4, U 11689.0 11914.2 14456.5 14912.7 5379.3
1000, 0.66, D, 0.5, N 10959.2 10827.2 13599.6 14037.5 4206.4
1000, 0.66, D, 0.5, U 14536.3 14412.4 16014.2 15707.5 5776.0
1000, 0.66, D, 0.6, N 10753.0 10751.8 13728.8 13616.9 3711.6
1000, 0.66, D, 0.6, U 11926.4 12077.9 14801.9 15159.4 6021.1

quite similar.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a parallel cooperative
adaptive memetic algorithm, named PCAMA, aimed to solve
optimization problems by deciding, depending on the instance
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TABLE IX
RESULTS(PART III)

description GA+TS GA+SA PSO+TS PSO+SA PCAMA
10000, 0.01, C, 0.4, N 1130.4 1146.4 1128.7 1165.0 1126.4
10000, 0.01, C, 0.4, U 17617.9 17617.9 17672.2 19288.8 17617.9
10000, 0.01, C, 0.5, N 1135.1 1156.8 1137.95 1177.7 1135.5
10000, 0.01, C, 0.5, U 21940.9 21940.9 22007.6 24268.1 21940.9
10000, 0.01, C, 0.6, N 1131.3 1150.1 1131.8 1165.8 1126.3
10000, 0.01, C, 0.6, U 27926.6 27926.6 27980.1 31426.5 27926.6
10000, 0.01, D, 0.4, N 1236.9 1601.3 1215.9 2603.6 1220.6
10000, 0.01, D, 0.4, U 22279.4 22279.4 23882.4 23837.6 22279.4
10000, 0.01, D, 0.5, N 1282.2 1623.8 1288.3 2430.9 1284.6
10000, 0.01, D, 0.5, U 26827.2 26827.2 26920.0 29151.5 26827.2
10000, 0.01, D, 0.6, N 1406.7 1800.6 1381.2 2811.9 1413.2
10000, 0.01, D, 0.6, U 32700.4 32700.4 32780.6 35157.1 32700.4
10000, 0.02, C, 0.4, N 1140.8 1183.4 1139.3 1218.1 1135.0
10000, 0.02, C, 0.4, U 10528.6 10528.6 10569.2 11715.4 10528.6
10000, 0.02, C, 0.5, N 1146.2 1194.0 1143.3 1227.1 1146.7
10000, 0.02, C, 0.5, U 12439.2 12439.2 12511.5 14050.3 12439.2
10000, 0.02, C, 0.6, N 1140.1 1186.1 1137.5 1216.2 1141.5
10000, 0.02, C, 0.6, U 15110.7 15110.7 15171.7 17219.1 15110.7
10000, 0.02, D, 0.4, N 1205.7 3236.5 1199.4 4644.3 1213.3
10000, 0.02, D, 0.4, U 18176.9 19292.3 18172.0 19539.6 18168.6
10000, 0.02, D, 0.5, N 1221.9 3173.5 1217.7 4614.8 1266.3
10000, 0.02, D, 0.5, U 21078.4 22040.4 21089.9 22394.8 21049.2
10000, 0.02, D, 0.6, N 1203.4 2952.9 1210.1 4334.2 1234.3
10000, 0.02, D, 0.6, U 24515.0 25304.7 24520.6 25813.4 24488.0
10000, 0.03, C, 0.4, N 1220.9 1225.9 1220.4 1270.1 1141.7
10000, 0.03, C, 0.4, U 8320.0 8320.0 9143.2 9159.5 8314.0
10000, 0.03, C, 0.5, N 1218.8 1228.2 1228.5 1269.9 1146.1
10000, 0.03, C, 0.5, U 9606.7 9606.7 10724.9 10895.5 9604.5
10000, 0.03, C, 0.6, N 1218.8 1228.5 1214.9 1268.2 1138.8
10000, 0.03, C, 0.6, U 11325.8 11325.8 12815.3 13030.6 11325.8
10000, 0.03, D, 0.4, N 3622.1 4867.2 3510.7 6822.6 1191.6
10000, 0.03, D, 0.4, U 17174.7 18111.9 17186.9 19162.0 16000.9
10000, 0.03, D, 0.5, N 3695.6 4913.6 3876.8 7040.5 1222.1
10000, 0.03, D, 0.5, U 20093.4 21119.9 20068.0 22073.8 18913.7
10000, 0.03, D, 0.6, N 3564.7 4841.2 3425.2 6741.6 1278.8
10000, 0.03, D, 0.6, U 22353.3 23512.1 22394.1 23951.3 21245.0

being solved, how to combine and configure different evo-
lutionary and local search metaheuristics. The computation
of the proposed strategy is divided in two steps, dealing
respectively with evolutionary and local methodologies. In
the first step, different evolutionary optimization strategies
cooperatively explore the search space in a parallel way. The
best solution found by this step is then forwarded to the second
step, where a set of local search strategies improves it by
means of a parallel cooperative exploration of the search space.

The cooperation among the different strategies is performed
by intelligently exchanging solutions in precise moments and
under certain conditions. The exchange control is supervised
by a set of fuzzy rules, which exploits knowledge modeled
by a collection of fuzzy decision trees and obtained using a
preliminary learning process, which analyzes the performance
of different methods applied to well-defined problem’s in-
stances. With this knowledge the fuzzy engine can predict,
depending on the instance being solved, the behavior of each
metaheuristic, deciding its relevance and choosing a suitable
set of parameter values.

The parallel and distributed nature of PCAMA is fully
suitable to be modeled using a multi-agent system where
software agents compute the cooperating metaheuristics under
the supervision of a coordinator agent whose intelligence is
given from the aforementioned fuzzy rules and decision trees.

PCAMA is able to operate independently in order to find
high quality solutions to new instances of the problem of
interest maximizing the fitness and the convergence rate. To
test this statement we applied the methodology to a well-

known optimization problem, SPLP. First we executed the
construction process, showing how each phase was performed,
and after that we carried out some computational tests in order
to check the effectiveness of the obtained strategy. In these
tests the proposed strategy is compared with non adaptive
memetic algorithms, obtaining very interesting results, being
confirmed its superiority by statistical tests which conclude
with a 99.9% of certainty that its results are better.
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