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Abstract

A serious concern in the design and use of biometric
authentication systems is the privacy protection of the in-
formation derived from human biometric traits, especially
since such traits cannot be replaced. Combining cryptogra-
phy and biometrics, several recent works proposed to build
the protection in the biometric templates themselves. While
these solutions can increase the confidence in biometric sys-
tems when biometric information is stored for verification,
they have been shown difficult to apply to real biometrics. In
this work we present a biometric authentication technique
that exploits multiple biometric traits. It is privacy-aware
as it ensures privacy protection and allows the extraction of
secure identifiers by means of cryptographic primitives. We
also discuss the implementation of our approach by con-
sidering, as a significant example, the combination of iris
and fingerprint biometrics and present experimental results
obtained from real data. The implementation shows the fea-
sibility of the scheme in practical applications.

1. Introduction

Biometric techniques are more and more deployed in
several commercial, institutional, and forensic applications
to build secure and accurate user authentication procedures.
The interest in biometric approaches for authentication is
increasing for their advantages such as security, accuracy,
reliability, usability, and friendliness. As a matter of fact,
biometric traits (e.g., fingerprints, voice, face), being physi-
cally part of the owner, are always available to the user who
is therefore not afraid of losing them. They are one of the
oldest form of identification (e.g., signature on a contract).
However, compared to passwords, biometric traits cannot
be strictly considered as “secrets” since often they can be
inadvertently disclosed: fingerprints are left on a myriad of

objects such as doors’ handles or elevator buttons; pictures
of faces are easily obtained without the cooperation of the
subjects. Moreover, if they are captured or if their digital
representations are stolen, they cannot be simply replaced
or modified in any way, as it can be done with passwords or
tokens [24]. These aspects have limited so far the number of
applications in which biometric authentication procedures
were allowed by privacy agencies in several countries. In
addition to this, users often perceive the potential threat to
their privacy and this reduces the user acceptance of bio-
metric systems, especially on a large scale.

In a typical biometric authentication system, trusted
users provide the authentication party with a sample of a
biometric trait (e.g., a fingerprint scan). A digital repre-
sentation of the fingerprint is then stored by the party and
compared at each subsequent authentication with new fin-
gerprint scans. The party is then in charge of protecting
the database where digital representations of fingerprints
are stored. If an intruder gained access to the database, she
could prepare fake fingerprints starting from each of the dig-
ital images. To limit such a possibility, images of biometric
traits are not stored explicitly: only a mathematical descrip-
tion of them is stored (the parameters of a model or relevant
features). Such a mathematical characterization is generally
called template and the information contained in it is suffi-
cient to complete the authentication process. Templates are
obtained through feature extraction algorithms. Often the
database is completely avoided and each user carries with
her a token, digitally signed and encrypted, where her tem-
plate is stored. While such solutions are sensible and cur-
rently deployed, they are still critical from a privacy point
of view since the biometric templates are exposed at risk of
being decrypted and abused if the cryptographic keys are
lost or stolen or the database protection violated.

In the literature, various strategies have been presented
to address the problem of supporting personal verification
based on human biometric traits, while ensuring a further
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level of protection (privacy) of digital templates [27]. Most
approaches rely on jointly exploiting the characteristics of
biometrics and cryptography [16, 13]. The main idea is that
of devising biometric templates and authentication proce-
dures which do not disclose any information on the orig-
inal biometric traits, for example replicating the usual ap-
proach adopted in password-based authentication system.
There, only a hashed version of the password is stored and
the authentication procedure is carried on only comparing
two hashes, the one stored and the other obtained from the
newly typed password. In this way, the original password
is never recovered (nor it might be) from its hashed ver-
sion. Similarly, biometric templates are generated by using
suited cryptographic primitives so as to protect their privacy
and ensure that an attacker cannot retrieve any information
on the original biometric trait used for the generation of the
template. In this way, users’ privacy is guaranteed. More-
over, even if a template is compromised (stolen, copied,
etc.) it is always possible to generate a novel template by
starting from the same original biometric trait. Biomet-
ric systems which guarantee this further level of protection
might be termed privacy-aware.

The use of cryptographic primitives to protect biometric
templates in privacy-aware systems poses a number of chal-
lenges. Different readings of the same biometric trait of the
same individual, even if obtained by using the same sen-
sor in a short period of time, always show some variability.
For this reason they cannot be directly exploited to secure
the biometric templates by means of standard cryptographic
techniques. In these techniques, cryptographic keys have
zero uncertainty and a single-bit difference (in the key or
in the encrypted data) spoils the possibility of accessing the
original data. The use of biometrics as cryptographic keys
for protecting the biometrics traits should therefore be er-
ror tolerant, since biometric readings are always different:
generating cryptographic keys from biometrics relies on an
error tolerant binary representation of the biometric features
[14]. A comprehensive survey of different approaches pre-
sented in the literature and the related limits can be found
in [27]. Biohashing and its variants have been presented
in [20] as a solution in which a biometric template is ran-
domized by using a pseudo-random token. However, the
security of such approaches is broken if the pseudo-random
token is stolen or copied. Other variants have been proposed
to face this problem [19].

In this paper, we propose a privacy-aware biometric
cryptographic scheme which, building over previous works,
enables the creation of a unique identifier associated with
each enrolled person by exploiting the error tolerant prop-
erties of the biometric templates. This is obtained by using
multiple biometric traits concurrently and the recently intro-
duced cryptographic primitives secure sketches and fuzzy
extractors. The resulting scheme is multimodal, in the sense

that multiple biometric traits (at least two) can be used.
Other proposals based on secure sketches have been pre-
sented; however, they have been shown difficult to apply
to real biometrics and the construction of practical systems
still is an open issue [26, 4]. In general, we feel that the
main aspect which has not been sufficiently studied is the
optimum use of the design opportunities offered by biomet-
ric multimodal systems. The contribution of this work is
threefold. First, we identify the requirements that a privacy-
aware multimodal biometric system should satisfy. Second,
we propose such a privacy-aware system to provide an ef-
fective and easily deployable identity verification system.
Third, we suggest a practical implementation of our method
based on real biometrics.

The outline of the work is as follows. Section 2 dis-
cusses approaches presented in the literature. In Section
3 we sketch the main characteristics that a biometric sys-
tem should present to overcome privacy related issues. In
Section 4, we present the design methodology suited to cre-
ate privacy-aware biometric verification systems with the
desired degree of security and privacy protection. The ba-
sic components and the (parallel and hierarchical) compo-
sitions according which they can be arranged are also intro-
duced. In Section 5, we then describe an actual implemen-
tation of the scheme. Given the fact that the construction of
practical systems is critical and many issues indeed relate to
implementation, the section enriches the description of the
scheme. We also report experimental data obtained from
real biometrical datasets. Finally, we give our conclusions
in Section 6.

2. Related work

Several biometric authentication techniques, based on
the use of error correcting codes (ECCs) to cope with the
variability of biometric templates, have been presented in
literature. Juels and Wattenberg [16] proposed the fuzzy
commitment scheme, where a secret message is protected
by using a biometric template. In this case, an error cor-
recting code is used to associate a codeword c with a person
and compute an offset (δ = c ⊕ x) for the biometric tem-
plate x. The encrypted message (the fuzzy commitment)
is then represented by the pair {δ, h(c)}, where h(c) is a
one-way hash function. Moving in the same direction, Hao
et al. [13] proposed a biometric key generation procedure,
based on an iris code feature extraction algorithm and on
the combined use of Hadamard and Reed-Solomon codes.
Juels and Sudan [15] also proposed a fuzzy vault scheme
relying on the polynomial interpolation technique to cope
with variability of the stored biometric templates. Recently,
a similar approach has been proposed in [25] to achieve a
biometric system for offline verification of certified, cryp-
tographically secure documents. The presented technique
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Figure 1. The overall structure of the multi-
modal biometric authentication system.

can produce printable IDs obtained from an extracted and
compressed iris feature and an arbitrary text.

The problem of generating strong keys from biomet-
ric readings has been addressed by Dodis et al [8], where
the properties of both secure sketches and fuzzy extractors
primitives have been analyzed. In [1], the author points out
how the multiple use of the same fuzzy secret can cause
security problems, and can introduce outsider and insider
attack scenarios, where an adversary tries to obtain informa-
tion on the secret by performing repeatedly extractions and
regenerations of the fuzzy secret. In such scenarios, with
some limitations, it is possible to show that information the-
oretic security can be achieved and existing constructions
can be adapted to satisfy the additional requirements. More
general attack models and constructions to achieve a secure
remote biometric authentication are proposed in [2]. A gen-
eral framework to design and analyze a secure sketch for
biometric templates is presented in [26], where face bio-
metrics have been used as case study. Interestingly, the pa-
per shows that theoretical bounds have their limitations in
practical schemes. In particular, it has been shown that the
entropy loss of the template cannot be considered a com-
plete description of the robustness level of the scheme in
practical applications, while the analysis of the false match
rate (FMR, i.e., the probability of an individual not enrolled
being identified) and false non-match rate (FNMR, i.e., the
probability of an enrolled individual not being identified by
the system) should be always envisioned. Finally, the appli-
cation of a fuzzy sketch based scheme to iris biometrics has
been presented in [3]. The paper relies on a near-optimal
error-correcting code (based on a two-dimensional iterative
min-sum decoding algorithm) and provides also an explicit
estimation of the upper bounds on the correction capacity
of such a kind of schemes.

3. Requirements

A first step in the construction of a privacy-aware multi-
modal biometric system is the identification of the require-
ments it should have. In particular, we have identified the
following requirements.

1. Privacy-awareness. The system should be able to

build user identifiers or templates from which it should
be practically impossible to recover a representation of
the actual biometric traits. For doing so it can employ
an efficient encryption scheme that converts noisy non-
uniform inputs (like biometric readings are) in easily
and reliably reproducible binary strings with a cer-
tain degree of tolerance in the given inputs. Privacy-
awareness might reduce the perceived threat to privacy
and could overcome the legal issues related to the re-
spect of privacy protection laws, currently ruling in
several countries.

2. Multi-modality. Multiple readings of the same biomet-
ric trait (e.g., the fingerprint of different fingers or the
iris of the two eyes) or multiple different traits should
be considered. Multimodal systems are know to dis-
play a higher reliability [23] and this might increase
user acceptance in a wider spectrum of applications.
Moreover, given a certain level of privacy protection,
the trust in the authentication procedure should scale
with the number of traits (e.g., admission to critical
areas could require a larger number of traits to be ver-
ified).

3. Modularity. The design should be modular with re-
spect to the basic biometric encryption modules. A
larger number of biometric traits should be added by
simply composing the basic modules. Besides simpli-
fying the design process, this allows for a tuning of the
structure of the system to the privacy protection de-
gree requested by the application, thus offering differ-
ent levels of security in authentication at appropriate
costs.

4. Independence. The overall scheme of the system
should be independent from the biometric traits se-
lected and from specific feature extraction algorithms
implementing proprietary solutions. Besides, as soon
as available, more accurate techniques for biometric
recognition (e.g., with improved error rates or relying
on novel traits) can be directly and easily incorporated
in the biometric authentication system. This allows for
updating continuously the global solution by exploit-
ing the opportunities offered by the state of the art. On
the other hand, since the biometric system for a spe-
cific application is realized by combining components
based on well-known algorithms and its characteristics
can be directly derived from the ones of these compo-
nents, the resulting system will be easy to understand
and be accepted by the application owner.

5. Independence from a centralized repository of identi-
ties. The system should not rely on the availability of
a central database supporting the authentication proce-
dure. National privacy agencies often rule against such
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Figure 2. The Basic Enrollment Module.

databases. Also, the system should not rely on network
architecture for cryptographic authentication to reduce
the points of failure.

6. Deployability. The system should be deployable. The
overall encryption and processing schemes should be
computationally efficient enough to be implemented
also in real-time applications. The overall structure
should be compact and configurable so as to be eas-
ily tailored to the real needs of the applications.

4. General Scheme

In this section we describe the scheme of our multimodal
biometric system. We consider first that only two biomet-
ric traits are employed concurrently; extensions to a larger
number of biometric traits will be obtained by the compo-
sition of basic modules (see Section 4.3). For each biomet-
ric trait a feature extraction algorithm Fi is selected among
the ones available in the literature. The algorithm, given a
digital representation of the trait, generates a mathematical
description that can then be turned in a digital string Ii (ni

bit long). In the following, to simplify the discussion we
refer to Ii as biometric input. We assume that for at least
one of the two feature extraction algorithms, it is possible
to measure its error rate ei (i.e., the rate of bits in the pattern
Ii which could be modified without affecting the biometric
verification of the subject). Without loss of generality, we
denote such an algorithm as F1.

With regards to inputs and outputs, the overall scheme
resembles a common multimodal system and is depicted in
Figure 1. It is composed of two basic modules: the en-
rollment module creates an ID starting from the biometric
readings of a user. The ID can be envisioned as a function of
the binary strings I1 and I2 and is associated with the owner
of the biometric traits. The ID is then stored or printed on
a document and must be provided during the verification
phase. The verification module verifies the identity claimed
by the user using the ID and novel biometric readings (bio-
metric inputs I ′1 and I ′2). The process is successful if the
novel readings match the ones used to build the ID.

4.1. Preliminaries: the fuzzy extractor
primitive

As briefly stated in the introduction, one of the problems
in deriving cryptographic keys from biometric traits is that
digital representations of the same biometric trait always
differ slightly. The same sort of differences are encountered
also among templates. Obviously, a single-bit difference in
a binary string (e.g., a password), by construction, makes it
impossible to recover the secret or validate an authentica-
tion procedure. The first problem that needs to be solved is
therefore the one of obtaining reliably reproducible binary
strings from noisy non-uniform inputs.

The secure or fuzzy sketch [8] is a cryptographic prim-
itive that solves the problem of error tolerance. It enables
the computation of a public string P from a binary string
r such that from another binary string r′ sufficiently close
to r it is possible to reconstruct the original one. In this
construction, the knowledge of P (which is made public),
does not reveal enough information on the original secret
reading r, provided that the entropy of r is large enough.
Secure sketches are therefore attractive in the context of
biometrics, given the large entropy of biometric templates.
Unfortunately, generally speaking, entropy is not uniformly
distributed along biometric templates and low entropy re-
gions do exist. Among other reasons, this might be eas-
ily understood considering that templates usually are for-
matted according to international standards (e.g., ANSI IN-
CITS 378-2004 for fingerprints) and then follow a regular
structure. Moving a step further, fuzzy extractors [1] ad-
dress the problem of non-uniformity by associating a ran-
dom uniform string R to the public string P still preserv-
ing the error-tolerance property of fuzzy sketches. Indeed,
fuzzy extractors can be constructed from fuzzy sketches and
enable the recovering of the secret uniform random string
R, from the knowledge of the public string P and a read-
ing r′ sufficiently close to r. A fuzzy extractor can be seen
as pair of functions: Generate (Gen) and Reproduce (Rep).
Gen is a randomized generation function that from the in-
put binary string w produces a private binary string R and
a public binary string P . The construction guarantees that
the probability density function of the bits in R is close to
uniform even for those who observe P . Rep is a regenera-
tion function that, given in input a public string P obtained
from the Gen procedure and a value w′ close enough to w
with respect to a certain metric, returns a string S such that
S = R.

The application of a fuzzy extractor to biometric tem-
plates in the real world poses a number of problems. Bio-
metric templates have different formats, which are not al-
ways compatible with the application of fuzzy extractors,
and the definition of a distance metric among templates
is not always straightforward. Furthermore, at the core of
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fuzzy extractors typically lies an error correcting code. The
variability among different readings of the same biometric
trait is often larger than the correction capabilities of most
codes and special constructions are needed. (More details
on the specific fuzzy-extractor we used are reported in the
next section and some practical details in Section 5).

4.2. The Basic Modules

A simplified sketch of the enrollment phase is reported
in Figure 2 where the basic enrollment module is depicted.
A novel identifier ID is created for each user, by composing
the available biometric features. The first biometric input I1
is used as input to the generation function of a fuzzy extrac-
tor that returns a public string P , and a secret R. The secret
string R is then xor-ed with I2 to produce the resulting bi-
nary string δ, that together with P constitute the ID for the
user. The construction guarantees that the randomness in R
is uniformly distributed, therefore from the ID it is not pos-
sible to reconstruct I2. The strings P and R are produced
directly by the Gen procedure of the fuzzy extractor which
has been built out of a secure sketch SS, according to the
construction proposed in [1]. The secret uniform random
string R is computed as R = Ext(I1, x), where Ext(w;x)
is the application of a strong extractor with randomness x
. A possible strong extractor is constructed selecting a ran-
dom binary string x and using it as key in a Hash-based
Message Authentication Code (HMAC). The public string
P is computed as P = SS(I1; c)||x, where SS(w; c) is the
output of the secure sketch with randomness c, used in the
construction of the fuzzy extractor. In practise, one selects
an error correcting code with n1 bits-long codewords and
error correcting capability t = e1 × n1. Then, a random
codeword c is selected and the distance between c and I1 is
computed as s = I1 ⊕ c.

The verification module, illustrate in Figure 3, combines
the ID associated with the user and two fresh biometric
readings to execute the authentication procedure through
biometric matching. The digital representations of the bio-
metric traits are processed through the same algorithms se-
lected for enrollment (e.g., F1 and F2) leading to the binary
strings I ′1 and I ′2. Given the variability inherent to biomet-
rics, I1 and I2 are similar to I ′1 and I ′2 respectively, with
respect to a certain metric. The verification module relies
on the regeneration phase of the fuzzy extractor, which em-
ploying I ′1 and the public string P = {s, x} regenerates
the same secret string R obtained from I1. More in detail,
c′ = I ′1 ⊕ s is a corrupted version of c, if the fresh reading
I ′1 is sufficiently close to the enrolled feature I1. In this case
the Rec phase of the secure sketch embedded in the fuzzy
extractor will return the string I1. In fact, processing c′ with
the decoding algorithm of the selected error correcting code
one might obtain c which in turn leads to I1 = c⊕ s. With
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Figure 3. The Basic Verification Module.

I1 in hand, R is obtained following the same path used at
enrollment: I1 is given in input to the strong extractor Ext
together with x contained in the public string P . Finally,
the reconstruction of the second biometric feature I2 is ob-
tained from R as I2 = R ⊕ δ. The verification succeeds
if the biometric matching between I2 and the I ′2 is positive.
It is worth noticing that differently from other approaches
that are based on fuzzy sketches or extractors, the verifica-
tion phase relies on a biometric matcher and not on a direct
comparison between reconstructed strings. If more accurate
matching modules were developed for the same biometric
trait, it would be possible to embed them into the scheme
with no impact on the remaining modules. Moreover, no-
tice that no requirements are set for the construction of the
matcher.

4.3. Composition of basic modules

The composition of the basic modules enables the cre-
ation of authentication applications having different levels
of security and using a higher number of biometric features.
The basic enrollment and verification modules can be com-
bined hierarchically and/or in parallel (with respect to the
input biometric readings). Figure 4 shows the layout of the
described compositions.

The parallel composition (Figure 4(A)) offers a simple
method to exploit different biometric traits to create the ID.
This way, the level of multi-modality implemented is higher
than in the basic approach since more than two biometric
traits are in use. Given a certain number of biometric traits,
the corresponding binary strings Ji are obtained from the
digital representations of the traits. The two inputs I1 and
I2 to the enrollment module described in Section 4.2 are
obtained through the concatenation of strings Ji. In par-
ticular, I1 is obtained from {J1, J2, . . . , Jk} and I2 from
{Jk+1, Jk+2, . . . , JN} where N is the number of differ-
ent biometrics. Analogously to what required for the basic
module, it should be possible to measure the error rates ei

for all the feature extraction algorithms that generated Ji
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Figure 4. Examples of the enrollment and verification modules in a parallel composition (A)-(B) and
in a hierarchical composition(C)-(D).

with i ∈ [1, k]. However, the global error rate e in the com-
posed input I1 needs particular scrutiny as each biometric
method differently contributes to the overall error rate. No-
tice with respect to Figure 4(B) that in the verification phase
the biometric matching module is truly multimodal, that is,
it receives in input a composition of N − k biometric read-
ings (Jk+1, Jk+2, . . . , JN ) to be matched against the ones
collected at enrollment.

The basic modules can be composed also in hierarchi-
cal structures. Figures 4(C) and 4(D) show an example of
a two-level hierarchical composition. Biometric inputs I1
and I2 are used to create ID1 by means of a basic enroll-
ment module. Then, ID1 is used in place of the second bio-
metric trait in a cascaded basic enrollment module together
with a third biometric input I3. The binary string ID2 is
finally associated with the user. In the verification phase,
ID2 and a binary string I ′3 obtained from a fresh biometric
reading are processed through a first verification submod-
ule (substantially a fuzzy extractor; see Figure (3)) and ID1

is recovered. Finally, a basic verification module receives
ID1, I ′2, and I ′1 as input and completes the authentication
process.

It is worth noticing that it is possible to build more com-
plex systems by using each method of composition (parallel
and hierarchical) recursively or by combining the methods
iteratively.

4.4. Analysis of the method

To foolish the authentication system, an adversary can:
i) obtain the digital representations of the biometric traits
of a genuine user through covert means; ii) or recover Ii
from what is publicly available and associated with the en-
rolled person (the identifier). In the first case, to attack the
system, the adversary should steal at least two biometric
samples and compute Ii to complete successfully the au-
thentication phase. As described in Section 4.3, a higher
number of biometrics can be taken into account in the setup
of the authentication system to increase the overall security
of the application and prevent such kind of attacks. In the
second case, the method should ensure that the adversary
cannot take advantage from the knowledge of the identifiers
or from tampering with the enrollment and verification pro-
cedures. Indeed, our approach builds on the fuzzy commit-
ment scheme presented by Juels and Wattenberg and recast
as secure sketch in [1, 7]. Differently from Juels’s approach,
in our scheme, we make use of a fuzzy extractor [8, 1] that
guarantees both uniformity and error tolerance in recon-
structing the biometric inputs I1 and I2. The assumption
when using a fuzzy extractor is that the public information
P must be sufficiently separate from the extracted secret R,
so that P does not leak information on the biometric input I .
Indeed, as shown in [10, 9], the mutual information between
P and w = I1 must be non trivial, that is, P must leak some
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information about the biometric input I1 in order to correct
errors in inputs similar to I1, even if the input distribution
is uniform. In this case, it is possible to use a weaker notion
of security and to define entropically secure fuzzy extrac-
tors, that is, fuzzy extractors for which the knowledge of
(R,P ) does not help in predicting the value f(I1) for any
predefined function f(w). An equivalent definition is the
one of uniform fuzzy extractor, that is, when the probability
density function of R and P might be considered close to
uniform. If the adversary has the capability to tamper the
public string P returned by the fuzzy extractor, another ab-
straction robust fuzzy extractors can be considered. For this
kind of extractors the retrieve procedure recovers the secret
stringR only if the original public string P is given as input;
otherwise, a special symbol is produced. By using a robust
uniform fuzzy extractor, the proposed scheme ensures both
the randomness ofR and the protection from adversarial at-
tempts to use the information in P to recover the original
biometric input readings.

In our scheme the second biometric reading is xor-ed
with the resulting bit-string obtained after processing the
first biometric reading, which is then used as a key. From
the previous discussion, the randomness of the key is en-
sured by the fuzzy cryptographic primitive used in the en-
rollment phase. To have strong security guarantees, it
should be also ensured that the biometric features extracted
from the reading are not too much biased, avoiding that the
adversary can collect information on the string used as key
in the xor-ing. For this reason, the second biometric input
should ensure a sufficiently large and uniform entropy.

5. Implementation and Experimental Results

Privacy-aware biometric systems while theoretically
conceivable are often difficult to apply to real biometrics.
For this reason, the implementation described in this sec-
tion not only shows that the method described in Section
4 is practically feasible, but also casts light on the method
itself.

Our implementation is based on two biometric traits: iris
and fingerprint. Since the work of Daugman [6], binary
strings (often called iriscodes) are obtained from pictures of
the eye by using banks of Gabor’s filters. Genuine subjects
and impostors are then discriminated using the Hamming
metric on such strings. Following the terminology used in
this paper, iris codes correspond to binary input I1 and the
feature extraction algorithm employed to generate them cor-
respond to F1. By using the code presented in [22], we
were able to compute 9600 bits wide iris codes (radial reso-
lution: 20). The code displays an error rate e1 of about 40%.
Fingerprints templates (I2) were instead computed by using
the NIST NBIS code mindtct [28] (feature extraction al-
gorithm F2); the 34 best quality minutia were selected and

then serialized in a ANSI INCITS 378-2004 record (1920
bits). The biometric match between fingerprint templates
was verified by using the NIST NBIS matcher bozorth3.
The matcher returns a similarity value between the two
minutia sets; to obtain a Hamming distance, as suggested
in the best practice of the literature of multimodal biomet-
rics, the bozorth3 score was subtracted from a large value
(500) and then normalized in the range [0, 1].

5.1. Construction of the fuzzy extractor

We have implemented the Gen procedure of the fuzzy
extractor as follows. First, a 128 bit random number x
was drawn and used as key in the HMAC-SHA1 algorithm
(strong extractor Ext), as provided by the standard Java
JDK, that processed I1 to obtain the pseudo-random secret
R. Since the number of bits in R must match the size of the
biometric input I2, which is a string of 1920-bit, we applied
repeatedly (12 times) the HMAC-SHA1 algorithm (HMAC-
SHA1 returns a string which is 160 bits long). Then, we
selected a shortened Reed-Solomon [9600, 1920, 7681]214

random codeword c [17]. The string s = Ĩ1⊕c is computed
as the binary shift necessary to obtain c from Ĩ1, where Ĩ1 is
the 9600 bit iris code preliminary mapped with a [14, 1, 1]2
naive code. The mapping might be rationalized as follow.
The codeword c is built with symbols that are 14 bits long.
Each of the 9600 bits of the iris code is turned into a 14-
bits symbol simply padding it with zeros, which is what the
coding we selected does. Such a coding ensures that at most
one bit in each symbols of c might be corrupted. One might
wonder why we did not simply packed the bits together to
form a series of m bits symbols as in common industrial
application. The reason is that we want to correct at most
a certain number of errors and not at least, as usual. The
selection of a proper error correction code is critical and not
trivial (see Appendix A for further discussion on this issue).
Finally, x was concatenated with s to obtain the string P ,
which can be made public without impairing the security of
the scheme.

Analogously, the reproduction function Rep was simi-
larly built. In practice, one decomposes P into x and s and
then applies the shift s to I ′1 to obtain a corrupted version of
c. If the number of bits that differ from I1 and I ′1 is smaller
than t = 3840, the error correction capability of the Reed-
Solomon code, the codeword can be decoded. The code-
word c is obtained as c = RSenc(RSdec(s ⊕ I ′1)), where
RSend and RSdec are a pair of Reed-Solomon encoding
and decoding algorithms. Then, I1 = s ⊕ c furnished at
enrollment is recovered. Analogously to what done in the
Gen phase, I1 is set as input to the strong extractor Ext with
randomness x (HMAC-SHA1) to obtain R.
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Figure 5. Frequency distributions and ROC curves for a practical implementation of the multimodal
biometric authentication system (panels (C) and (D)). As a reference, in panel (A) and (B) we reported
the frequency distributions of the single-trait biometric systems on which our implementation built
(dashed-line: impostor). Correspondent ROC curves are included in panel (D).

5.2. Experimental Results

We made the assumption that the enrolling agency de-
sires to collect only biometrics of sufficient quality and that
more than one sample could be required for each subject
to ensure such a quality. We further supposed that three
different iris pictures and fingerprint scans should suffice;
among the three iris codes computed we retained the one
with the smallest number of masking bits1 (I1). For each
fingerprint’s minutia, mindtct offered a quality estimate;
the fingerprints template with the highest average quality
was further processed (I2). We performed our experiments
by coupling eyes images from the CASIA iris database [5]
to fingerprints scans extracted from the FVC2000 dataset.
In particular, we synthetically created a dataset of 108 indi-
viduals. For each individual, we had three eye and finger-
print images to be used in the enrollment phase, and four
eye images and five fingerprint images for the verification
phase [21].

At enrollment, I1 was processed through the Gen phase
of the fuzzy extractor to obtain R and P . Then, the offset
δ = R ⊕ I2 was concatenated with P to form the ID. The
procedure was repeated for each of the 108 individuals.

For the verification phase, we quantified both the FNMR,
by applying the basic verification module to biometric in-
puts collected from the same subject, and the FMR, by try-
ing to validate the ID against all the other subjects. First, the

1For each bit of the iris code, there is a correspondent masking bit that
denotes its quality; a one masking bit means that the iris code in that posi-
tion is affected by errors occurred in the segmentation procedure.

ID was split into δ and P . The Gen phase of the fuzzy ex-
tractor ensures that as long as a second iris code I ′1 is close
enough to the iris code collected at enrollment, the secret
R might be obtained only from the knowledge of P . Obvi-
ously this condition should fail for an impostor. Therefore,
when the decoding operation RSdec(s ⊕ I ′1) failed using
each of the four available iris codes in the validation set, the
Hamming distance between the two subjects being verified
was set to 1. Otherwise, with R and δ at hand, the fin-
gerprint template might be retrieved, by computing R ⊕ δ.
Then, once acquired a second fingerprint sample a biomet-
ric match could be performed, and its result determined the
success (or not) of the verification procedure. The biomet-
ric match was performed with each of the five fingerprint
images available.

We selected as references for a comparison the per-
formances of the two biometric systems based only on
iris or fingerprint, respectively. Such performances were
evaluated on the same dataset and using an identical ap-
proach for enrollment and verification (best-of-three in en-
rollment; best-of-four in verification for the iris system and
best-of-five for the fingerprint system). Figures 5(A)-(C)
present the frequency distributions for different values of
the match-threshold for the single-trait biometric system
and for our method. Moreover, Receiver Operating Char-
acteristic (ROC) curves are reported in Figure 5(D). The
single iris system showed a Equal Error Rate (EER), (i.e.,
the value of the threshold used in the discriminating proce-
dure at which FMR and FNMR are identical) of 0.9%, while
the fingerprint system and the proposed scheme achieved a
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EER=0%. As expected for multimodal systems, the scheme
we suggested, while improving the protection of the biomet-
ric inputs, showed a performance which is equivalent to the
one of the single-trait fingerprint system (which is the best
performer in our practical implementation).

By using commercial iris-code segmentation libraries,
we are sure that better absolute rates could be obtained.
Also, larger datasets could be employed to have more re-
alistic estimates of the EER. However, the implementation
of our method was developed mainly to verify the practical
feasibility itself and it fulfills such goal.

6. Conclusions

In this paper, we have proposed a method combining
standard cryptographic techniques and biometrics to pro-
vide an effective and easily deployable identity verification
system. The system is privacy-aware since the information
contained in the identifier is not sufficient to recover the bio-
metric traits of the users and further biometric inputs are
required. Any abuse of biometric information is then pre-
vented. With respect to the requirements discussed in Sec-
tion 3, it is easy to see that Requirement 1 was completely
fulfilled. The method is multimodal (Requirement 2) need-
ing at least two biometric traits. Moreover, the method is
composed of two basic modules, that can then be combined
to build more complex systems (Requirement 3) and it does
not depend on the particular feature extraction algorithms
selected (Requirement 4).

The method we propose enables the biometric verifica-
tion of persons by using offline secure documents, in which
neither biometrics traits nor other sensible data are stored in
a central database (Requirement 5). To ensure its validity,
the identifier produced during the enrollment phase could
be signed using the private key of the issuer. Then, at veri-
fication, the signature on the ID could be verified using the
issuer’s public key.

Finally, we suggested an actual implementation of our
method based on real biometrics. The implementation
shows the feasibility of the scheme (Requirement 6) and of-
fers an idea of the performances one might obtain from the
application on real datasets. Indeed, the resulting error rate
is acceptable and it is not worse than the best error rate of
the single-trait biometric systems on which it is based. The
work paves the way for large scale applicability of privacy-
aware biometric systems.
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Appendices
A. A short discussion on the ECC code em-

ployed

The selection of the error correcting code needs further
discussion. Given the large inter-subject variability of iris
templates, for which typically e1 > 0.25, the fraction of
errors the code must be able to withstand is larger than in

usual ECC applications. Common ECC code, like BCH,
are capable of correcting a fraction of errors strictly less
than n/4, thus seems ruled out. Others binary codes might
get closer to the Singleton bound but at the price of a small
rate k/n. In fact, as several authors pointed out [9], the
Plotkin bound from coding theory implies that a binary code
can correct more than n/4 errors only at the expenses of
reducing the number of codeword to about log n.

This is the route we pursued by deriving a binary code
from a Reed-Solomon one; the latter is Maximum Dis-
tance Separable (MDS) and reaches the Singleton bound.
The concatenation of the shortened Reed-Solomon code
[9600, 1920, 7681]214 and the [14, 1, 1]2 mapping leads on
average to a [14 × 9600, 1920, 7681]2 binary code. The
correction rate is de facto increased only as we can decide
which part of the codeword affect with errors and which
not. And this is different than what happen in actual digital
transmissions.

The idea is made clearer if instead of using a Reed-
Solomon code, we generalize the construction to BCH
codes. The software we employed for computing the iris
code had e1 = 0.4 and injecting errors in a restricted part of
a longer codeword we might manage to use also this fam-
ily of code. For example, let us use for the case at hand a
[32767, 2279, 7679]2 code that can correct up to t = 3839
errors. Performing c⊕I1 on the 9600 upper bit at enrollment
and s⊕ I ′1 on the same substring at verification does not in-
troduce any further error on the remaining 32767 − 9600
bits. But now having gathered all the possible errors on a
smaller part of the codeword, we also obtained a larger local
correction ratio that is actually about 3839/9600 ≈ 40%, as
desired.

A second issue is that in the scheme described, the de-
coding procedure was successful when the number of dif-
ferent bits between the two iris codes was smaller than the
error correcting capacity of the code. For Reed-Solomon
codes, the classical Berkelekamp-Welch decoder can cor-
rect up to t = dn−k

2 e errors. But in [12] the authors
showed that it is feasible to list all the codewords at a
Hamming distance t′ > t (list decoding problem), with
t′ ≤ dn −

√
n(k − 1) − 1e. Proceeding further in this di-

rection, in [18] the authors managed to exploit the statistical
characteristics of the channel and to solve the list decoding
problem with even larger t′. While a larger number of errors
corrected by an ECC decoder means more reliable trans-
missions and storage of information, here it implies that
the user biometrics might be uncovered simply exploiting
a more capable decoder. The solution is obvious: either a
code for which list decoding algorithms are not available
should be used, or the Reed-Solomon code should be tuned
on the larger capacity decoder. The latter solution brings
a wider computational burden (even if recent works show
clear progress in reducing the computational time [11]).
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