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Abstract. Traditional feature extraction methods, such as Gabor filter and
competitive coding, have been widely used in finger-knuckle-print (FKP)
recognition. However, these methods focus on manually designed features
which may not achieve satisfying results on FKP images. In order to solve this
problem, a novel batch-normalized Convolutional Neural Network (CNN) ar-
chitecture with data augmentation for FKP recognition is proposed. Firstly, a
novel batch-normalized CNN is designed specifically for FKP recognition.
Then, random histogram equalization is adopted as data augmentation here for
training the CNN in FKP recognition. Meanwhile, batch-normalization is
adopted to avoid overfitting during network training. Extensive experiments
performed on the PolyU FKP database show that compared with traditional
feature extraction method, the proposed method can not only extract more
discriminative features, but also improve the accuracy of FKP recognition.
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1 Introduction

Due to the huge market demand of personal authentication, it has attracted much
attention in the academic and industry fields. Biometric authentication [1–4] can pro-
vide higher security than normal computer passwords which are utilize in applications
such as: bank security, computer security system and national ID card etc. Over the
past few decades, researchers have focused on the use of biometric traits, like face,
fingerprint, iris, palmprint, hand vein, voice, gait etc. In recent years, hand-based
biometrics have attracted more attention compared to other biometrics identifiers.
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Biometrics, such as palmprint [1], hand geometry [2], fingerprint [3] and hand vein [4],
have been fully researched.

Owing to the uniqueness of FKP, FKP can be considered as a distinctive biometric
identifier technique [5, 6]. The unique advantages of the FKP, compared with other
biometrics are as follows: the surface of FKP is not easy to be abraded because people
usually hold things with the inner side of their hands. Because of non-contact char-
acteristic the collection of the FKP, the users usually have higher acceptance [7]. As
such, FKP is considered one of the most promising personal identification technologies
of the future.

However, to the best of our knowledge, these are no investigations about the
application of convolution neural network for FKP recognition. Hence, we designed a
novel batch-normalized CNN with deep learning method for FKP recognition to
improve recognition accuracy. Compared with traditional methods, the proposed CNN
could extract more distinctive features and achieve satisfying recognition performance.
The main contributions of this paper are as follows: (i) A novel CNN architecture
specialty for FKP recognition is designed. (ii) Histogram equalization method as a data
augmentation method is adopted to get more training data for FKP recognition.
(iii) Batch-normalization is utilized to prevent overfitting in CNN, respectively.

The rest of this paper is structured as follows: Sect. 2 introduces the existing FKP
recognition methods. Section 3 presents the proposed batch-normalized CNN archi-
tecture. Section 4 describes the recognition process of FKP images. Section 5 shows
and analyses the experimental results. Finally, Sect. 6 presents the conclusions.

2 Related Work

Many recent studies on FKP recognition attempt to generate distinctive and robust
feature representation for FKP images. Woodard et al. [8, 9] built a 3D hand database
and extract 3-D features from finger surface for authentication. Due to the high cost and
time consuming of 3D acquisition equipment, the real-time performance of the bio-
metrics system is affected. And there is no effective system for the extraction of the
characteristics of the outer surface of the finger. Kumar et al. [10, 11] extracted finger-
back surface image features to personal authentication by subspace analysis methods.
Subspace analysis is widely used in face recognition task because it has the charac-
teristics of strong distinctive, low computational cost, it is easy to realize and good
separability; however, it cannot effectively extract the line features, such as FKP
images. Zhang et al. [12] used Gabor filters to extract the feature and use the com-
petitive coding (CompCode) to encode it, as the final feature representation for FKP
images. Later, Zhang et al. [5] used Gabor filter to extract the orientation information
and magnitude information of FKP images. In [13], the coefficient of the Fourier
transform of the FKP images as features, and the similarity of the images is calculated
by band-limited phase-only correlation technique. To obtain more FKP images,
Morales et al. [14] used Gabor filter to enhance the FKP lines, then adopted Scale
Invariant Feature Transform (SIFT) to extract features. Le et al. [15] proposed a robust
feature presentation and matching method based on Speeded-Up Robust Features
(SURF). This method is robust, which is invariant to the change of rotation, scale and
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viewpoint. Barinath et al. [16] used a combination of SIFT and SURF to enhance the
texture of FKP images. Owing to the complementarity of the two described approaches,
the FKP recognition method made great progress. Li et al. [17] used a high-order
steerable filter to extract continuous orientation feature maps, an Adaptive Steerable
Orientation Coding Scheme (ASOC) is proposed. Yang et al. [18] proposed a Fisher
discriminant analysis framework for FKP recognition. Zhang et al. [19] used RCode1
and RCode2 to code feature, improving the FKP recognition rate; however, these
methods could not achieve desirable FKP recognition results.

3 Batch-Normalized CNN

A novel CNN architecture specifically for FKP recognition has been designed. The
batch-normalized CNN architecture is shown in Fig. 1, which includes 4 convolution
layers and 3 fully connected layers. ‘C’ denotes the convolution layer, the maxpooling
layer and the full connection layer are represented by ‘MP’ and ‘FC’, respectively.
During the training stage, the input of the CNN is a 220 � 110 grayscale image; all the
images are cropped into 110 � 110 randomly as the input of the entire network. The
parameters of each layer are optimized based on multiple experimental verification.
Owing to the small FKP database, the solution to avoid overfitting is crucial. Hence, to
prevent the training overfitting, a dropout layer is adopted in the proposed CNN and a
batch of normalized layer is added after each convolution layer. Details of the network
structure and parameters of batch-normalized CNN are shown in Table 1.

3.1 Batch-Normalized Convolutional Neural Networks

Due to the change of parameters of the previous network layers during the training
process, the input of other layers will be affected. This leads to a large amount of
computation from deep neural networks. This may reduce the speed of training,
requiring lower learning rates and a careful parameter initialization. This makes
training models notoriously difficult to saturating nonlinearities [21].

Batch normalization can be used for activation sets in a network. Here, we consider
a affine transform followed by an element nonlinearity:

z ¼ gðWuþ bÞ ð1Þ

220×110

C1

Input

52×52

MP1

26×26

C2 MP2

13×13
6×6 6×6 6×6

C3 C4 MP3

1024
512

FC1 FC2

FC3

3×3

    Output

 recognition

   accuracy

Fig. 1. The batch-normalized CNN architecture.
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where W and b represent the parameters that the model needs to optimize. Function g(�)
represents a non-linearity function such as ReLU. Batch normalization is applied to the
all convolutional layers and the full connected layers. And BN transform is added by
normalizing x = Wu + b before non-linearity. The input layer u should be normalized,
because u is the output of another non-linear layer whose distribution may change
during the training process. This also limits the first and second phases of the input
layer and mitigating the covariance shift. On the contrary, since Wu + b has symmetry
and a non-sparse distribution, normalizing is more likely to produce a stable distri-
bution of the excitation function.

Note that the subsequent mean subtraction can cancel the effects of bias b, so bias
b can be ignored, as a result, z = g(Wu + b) can be replaced with:

z ¼ gðBNðWuÞÞ ð2Þ

A pair of parameters c(k) and b(k) are optimized at each layer, where BN transform
is utilized.

For convolutional layers, we also require that the normalization should obey the
convolutional property, so that the same feature maps at different locations using
different elements are normalized in the same way. In order to achieve this, all the
activations at all locations are normalized in a mini-batch. Given a feature map, all the
activation of a given feature map adopts the same linear transformation.

3.2 ReLU Activation Function

Compared with traditional saturated nonlinear activation functions, such as tanh and
sigmoid, etc. ReLU (Rectified Linear Units), as non-saturated nonlinear activation
function, has a faster network convergence speed. During forward propagation sigmoid
and tanh function requires exponential calculation, while ReLU only needs to set a
threshold value. In this paper, we utilized ReLU as the activation function of the CNN

Table 1. Comparison of network model architecture.

Layer name Alexnet [20] Batch-normalized CNN

Input 224 220 � 110
Conv1 96,11 � 11 kernels 96,7 � 7 kernels
Conv2 256,5 � 5 kernels 128,5 � 5 kernels
Conv3 384,3 � 3 kernels 128,3 � 3 kernels
Conv4 384,3 � 3 kernels 128,3 � 3 kernels
IP1 4096 1024
IP2 4096 512
IP3 1000 165
Loss Softmax Softmax
Convolution kernels 1376 480
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architecture, which mimics the characteristics of a unilateral and a sparse activation of
biological neurons. ReLU activation function can be expressed as:

f ðxÞ ¼ maxð0; xÞ ð3Þ

When the input is less than or equal to 0, the response is 0, otherwise the response
directly equals its own value. Due to the characteristics of the ReLU function, the
output has some sparsity, which can speed up the network convergence and make the
CNN have a stronger classification ability.

f
0 ðxÞ 0; x� 0

1; x[ 0

�
ð4Þ

By Eq. (4), the gradient is not saturated, only when x > 0, f′(x) = 1; therefore, in
the process of backward propagation, the problem of gradient dispersion can be alle-
viated and the parameters of CNN can be updated quickly.

4 FKP Recognition Process

The recognition process of FKP images is divided into two stages: training and testing.
Training stage includes three parts: ROI extraction, data augmentation and batch-
normalized CNN training. The quality of the training data is critical to the training of
the network, so it is necessary to ensure that the adopted database is effective. Firstly,
we adopted a two-stage center point detection [22] to improve the positioning accuracy
in skewed conditions. Secondly, histogram equalization method is utilized to obtain
more data for the FKP recognition. Finally, the preprocessed training data is used as an
input to train the proposed CNN model. The testing stage includes two parts: data
preprocessing (ROI extraction) and identifying results. First, preprocessing testing data,
and then the trained model is adopted to recognize FKP images.

4.1 ROI Extraction

The FKP images have a lot of background noise, which will do harm to the recognition
rate. [23, 24] shows that the recognition performance of FKP image recognition highly
depends on the accuracy of ROI extraction. This paper used a more effective two-stage
center point detection method [22] to extract ROI of FKP images. The method has two
stages: center point preliminary detection and center point secondary precise posi-
tioning. For more details, please refer to [22]. In Fig. 2, the first row are the original
FKP images of four people in the PolyU FKP database [25] and images in the second
row are the ROI images, respectively.
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4.2 Data Augmentation via Random Histogram Equalization

As shown in Fig. 3(a), the FKP ROI image has been curved with an nonuniform
reflections, resulting in a low contrast; hence, we augmented the FKP ROI images by
histogram equalization method to a better texture image distribution. Additionaly,
PolyU database is small, which will bring limitations to the algorithm, making it appear
overfitted in the learning process. Inspired by [26], histogram equalization was used
with different levels to augment the FKP data, which significantly improve the clas-
sification results. In general, the FKP database after histogram equalization will satisfy
the requirement of the data quantity and avoids the overfitting phenomenon.

Given an image, the gray level is distributed 0 � r � 1 after normalization. For
any r within [0,1] interval, it can be transformed as:

s ¼ TðrÞ ð5Þ

The transformation function T(r) should satisfy two conditions: firstly, it increases
monotonously in [0,1] interval to ensure the grayscale of the image changes from white
to black orderly. Secondly, after the mapping transformation, the value of s must be
guaranteed within the [0,1] interval. The discrete form of r’s probability density
function is as follows:

PrðrkÞ ¼ nk
n

ð6Þ

Among them, Pr(rk) represents the distribution of image gray level, rk represents the
discrete gray level, where 0 � rk� 1, k = 0,1,2…, n-1. n denotes the total number of

Fig. 2. Original FKP images and ROI images.

(b) (a)

Fig. 3. (a) FKP ROI image, (b) FKP ROI image with histogram equalization.
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pixels, and nk denote the number of rk appearing in the image, respectively. Image
histogram equalization can be expressed as:

Sr ¼ TðriÞ ¼
Xk

i�0

ni
n

ð7Þ

where k is the gray level, 0 � rk� 1, k = 0,1,2…, n−1. The original FKP image and
FKP image after histogram equalization is shown in Fig. 3(a) and (b).

By setting different thresholds (low-in, high-in, low-out and high-out) and using the
transformation function (T(r)), the amount of the training images will be 360 times
more than the original database. The values that are smaller than the low-in values will
be mapped to low-out, while the values that bigger than high-in values will be mapped
to high-out, and the values between low-in and high-in will be transformed into [low-
out, high-out] by T(r).

5 Experimental Results

The experiment was configured with on a desktop computer with Intel Xeon E5-
2620v2, 2.1 GHz CPUs, 80 GB RAM, a single NVIDIA Tesla K20c, on Windows 10
operation system. The training and testing of the proposed CNN model are based on the
publicly available Caffe Library [29].

5.1 PolyU Database

Extensive experiment is performed on PolyU FKP database, which shows the per-
formance of the proposed CNN architecture. The database’s images were obtained by
collecting finger images from 165 volunteers, with a ratio of nearly 3:1 for male and
female. Among them, the proportion of people aged 20–30 and 30–50 years is close to
7:1. All images are collected in two sessions. In each session, the volunteer’s left index,
left middle, right index and right middle images were collected, each using 6 images,
respectively. Overall, the database contained 7920 images of 660 different fingers from
165 volunteers. The average finger image collection time interval from the first to the
second session was 25 days. Among them, the maximum and minimum collected time
intervals between two sessions were 196 days and 14 days, respectively. After ROI
extraction and data augmentation, the final image size was 220 � 110. Here, we use
the histogram equalization mentioned in Sect. 4.2 to augment the data.

5.2 Configuration of Training Parameters

Training parameters are set as follows:

(1) prepare data sets, and divide the PolyU database into 6:1:5 as training, validation,
and test data sets, respectively. More specifically, the training set randomly
selected 6 images from each subject. The same method is used to complete the
preparation of the validation sets and test sets.
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(2) we set the momentum to 0.9, the weight decay of all the convolution layers and
the first fully connected layer is 5e−4, and the fixed learning rate is 0.001.
Randomly initialized the tunable network parameters and started the training of
the network.

(3) during the training process, when the verification accuracy is no longer trending
upwards, then reducing the learning rate to continue training until the verification
accuracy is no longer increasing.

(4) the test results were obtained by selecting the model with the highest verification
accuracy and the least loss.

(5) we set the dropout rate to 0.5, which gets the best performance.

5.3 FKP Experimental Results

The recognition results are shown in Table 2, where LI denotes left index finger, LM
denotes left middle finger, RI denotes right index finger and RM denotes right middle
finger.

To verify the effect of the augmented data on the proposed CNN architecture, the
contrast experiment was added. Experimental results show the effectiveness of the
proposed CNN on augmentation data used in this paper. The training of network model
is relying on the scale of training data; hence, increasing the training sample can
improve network testing performance.

From the experimental results, we know that Comp Code accuracy is 98.0%,
98.0%, 98.2% and 98.1%, respectively. The proposed CNN on the proposed aug-
mented data can obtain the state-of-the-art recognition accuracy of 99.1%, 98.9%,
99.4% and 98.3%, correspondingly. Compared with the state-of-the-art methods, such
as AlexNet, BP [30], Ordinal Code [31], BOCV [32], RLOC [33], SRC [34] and Comp
Code [35], the structure proposed in this paper has achieved the best results.

Table 2. Comparison results of proposed FKP recognition algorithms and other algorithms.

Recognition method Finger

LI LM RI RM
TTR(%) TTR(%) TTR(%) TTR(%)

BP [30] 92.6 92.5 93.2 93.0
Ordinal Code [31] 97.3 95.9 96.3 95.9
BOCV [32] 97.6 97.6 97.6 97.7
RLOC [33] 97.8 97.7 97.9 97.7
SRC [34] 98.7 98.7 98.4 98.0
Comp Code [35] 98.0 98.0 98.2 98.1
AlexNet 85.6 86.5 85.2 85.2
AlexNet with AD 88.3 90.2 86.8 89.9
Batch-normalized CNN 89.7 92.1 87.1 91.3
Batch-normalized CNN with AD 99.1 98.9 99.4 98.3
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6 Conclusion

In this paper, we proposed a novel batch-normalized CNN for FKP recognition. A data
augmentation method of random histogram equalization and a dropout layer were
adopted to prevent overfitting during training in the proposed neural network archi-
tecture. Experimental results on finger-knuckle-print database established by the PolyU
show that the batch-normalized CNN could achieved satisfying results in recognizing
finger-knuckle-print.
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