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Abstract – The early identification of acute lymphoblastic leukemia 

symptoms in patients can greatly increase the probability of 

recovery. Nowadays the leukemia disease can be identified by 

automatic specific tests such as Cytogenetics and 

Immunophenotyping and morphological cell classification made by 

experienced operators observing blood/marrow microscope images. 

Those methods are not included into large screening programs and 

are applied only when typical symptoms appears in normal blood 

analysis. The Cytogenetics and Immunophenotyping diagnostic 

methods are currently preferred for their great accuracy with 

respect to the method of blood cell observation which presents 

undesirable drawbacks: slowness and it presents a not standardized 

accuracy since it depends on the operator’s capabilities and 

tiredness. Conversely, the morphological analysis just requires an 

image -not a blood sample- and hence is suitable for low-cost and 

remote diagnostic systems. The presented paper shows the 

effectiveness of an automatic morphological method to identify the 

Acute Lymphocytic Leukemia by peripheral blood microscope 

images. The proposed system firstly individuates in the blood image 

the leucocytes from the others blood cells, then it selects the 

lymphocyte cells (the ones interested by acute leukemia), it 

evaluates morphological indexes from those cells and finally it 

classifies the presence of the leukemia. 

Keywords – Automatic Leukemia Identification, Acute Leukaemia, 

Morphological Analysis, Blast Cells, Lymphoblast, Leucocytes 

analysis.

I. INTRODUCTION 

Acute Lymphocytic Leukemia (ALL), also known as acute 

lymphoblastic leukemia is a cancer of the white blood cells, 

characterized by the overproduction and continuous 

multiplication of malignant and immature white blood cells 

(referred to as lymphoblasts or blasts) in the bone marrow. It 

is fatal if left untreated due to its rapid spread into the 

bloodstream and other vital organs. ALL produces a lack of 

healthy blood cells due to an abnormal number of malignant 

and immature white blood cells [1]. It mainly affects young 

children and adults over 50. Early diagnosis of the disease is 

fundamental for the recovery of patients especially in the case 

of children.

Unfortunately, the initial symptoms of ALL are quite 

aspecific: generalized weakness, anemia, frequent fever and 

infections, weight loss and/or loss of appetite, excessive 

bruising or bleeding from wounds, nosebleeds, bone pain, 

joint pains, breathlessness, enlarged lymph nodes, liver 

and/or spleen. If the described symptoms are present, blood 

tests such as a full blood count, renal function, electrolytes 

and liver enzymes and blood count have to be done. Clinical 

suspicion alone may be the only reason to perform a bone 

marrow biopsy, which is the next step in the diagnostic 

process. Bone marrow is examined for blasts, cell counts and 

other signs of disease. Pathological examination [2], 

cytogenetics [3] and immunophenotyping are common 

diagnostic analysis. Once the blast-cells invasion starts, blast 

cells can be detected into the peripheral blood.  

Figure 1 shows the microscope image of a blood film (left) 

and it plots three examples of normal lymphocytes and three  

lymphoblasts cells (right). Images in Figure 1 have been 

digitalized by the optical microscope by usgin a CCD and 

then acquired by a frame-grabber system [4]. Principal cells 

present in the blood are the red blood cells, and the white

cells (leucocytes). Leucocyte cells containing granules are 

called granulocytes (composed by neutrophil, basophil,

eosinophil). Cells without granules are called agranulocytes 

(lymphocyte and monocyte) [1]. ALL symptoms are 

associated only to the lymphocytes.  

Normal Lymphocytes 

Peripheral blood film Lymphoblasts

Figure. 1. Peripheral blood film (left) with white cells marked with colorant. 

On the right, examples of normal (top) and blast (down)  

lymphocytes acquired with 1000x microscope. 

Hence, the observation of the peripheral blood film by 

expert operators is one of the diagnostic procedures available 

to evaluate the presence of the acute leukemia. This analysis 

suffers from slowness and it presents a not standardized 

accuracy since it depends on the operator’s capabilities and 

tiredness. Conversely, the morphological analysis just 

requires an image -not a blood sample- and hence is suitable 

for low-cost, standard-accurate, and remote diagnostic 

systems.  

Our work aims to demonstrate that the peripheral blood 

film observation can be fully automated and can be 

performed as ancillary/backup service to the physician 
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activity. In this framework, tens of thousand cells belonging 

to a blood slide can be analyzed looking for one blast cell. 

Only few attempts of partial/full automated systems based on 

image-processing systems are present in literature and they 

are still at prototype stage [5, 6]. 

The system we propose firstly individuates in the blood 

image the leucocytes from the others blood cells, then it 

extracts the lymphocyte cells (the ones interested by acute 

leukemia), it extracts morphological indexes from those cells 

and finally it classifies the presence of the leukemia using 

neural networks. The overall system is described in section 2. 

Section 3 focuses on how to extract a suitable set of 

morphological indexes from the leucocytes in order to 

identify the blast cells by a classifier. Section 4 describes the 

design of the classifier, how classification accuracy can be 

tested and how a proper classifier can be chosen from a set of 

candidates of different families of classifiers.  
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Figure 2. The structure of modules composing the  

acute leukemia classification system. 

II. THE IMAGE PROCESSING SYSTEM 

The main modules which compose the overall system are 

plotted in Figure 2. The Single-cell Selector module firstly 

enhances the input image and identifies the single cells. It has 

been composed by adaptive prefiltering and segmentation 

algorithms. Secondly, the White-cells Identifier module 

selects the white cells present into the image by separating 

them from others blood’s components (red cells and 

platelets). The third module (the Lymphocyte Identifier) can 

recognize a lymphocyte with respect to the other selected 

white cells. A complete description of these three modules 

has been given in [7]. The three presented modules can 

recognize leucocytes in a blood film image with a mean error 

of about 0.02%. Typically, the main source of error is related 

to the strong morphological similarities between the 

components of the leucocytes family (lymphocytes, 

monocytes, etc.), conversely is much less probable to classify 

the other blood components (such as red cells) as lymphocyte 

than vice versa [7]. In general, the first three modules of the 

system in Figure 2 can select sub-images of lymphocytes 

from the blood film image with high accuracy. Examples of 

sub-images containing a lymphocyte produced by the 

described chain are given in Figure 1 (the sub-images on the 

left).

The system we propose in this paper is the sub-system 

which has to recognize if a lymphocyte is blast or normal, 

and it is composed by the modules inside the dashed line in 

Figure 2: the Feature Extraction module and the 

Classification module. The Feature Extraction module 

processes a sub-image containing a lymphocyte coming from 

the Lymphocyte Identifier module and it produces in output a 

set of morphological indexes. The classification module 

processes those indexes in order to classify the cell as blast or 

normal. If the system finds a blast cell, the blast cell counter

is increased; otherwise a new lymphocyte will be processed. 

The two modules perform the automatic morphological 

analysis of lymphocyte images. 

III. AUTOMATIC MORPHOLOGICAL ANALYSIS  

The classification of the lymphocyte sub-image is quite 

complicated since even an expert operator can have dubs in 

classifying some lymphocyte cells. Actually, the 

morphological distinctive aspects of blast and normal 

lymphocytes are very smooth.  

The features we want to extract from the cell are mostly 

the features that the operators qualitatively observe in the 

blood film to classify the cell as blast or normal. The most 

common leukemia classification is the FAB method [8]; 

nowadays it has been updated with the immunologic 

classification [3] which it is not image-based. Otherwise, the 

FAB method is still valid for image-based morphological 

classification. Concerning the ALL, the FAB classification is 

three-partitioned as follow: 

L1: Blasts are small and homogeneous. The nuclei 

are round and regular with little clefting and 

inconspicuous nucleoli. Cytoplasm is scanty and 

usually without vacuoles. 

L2: blasts are large and heterogeneous. The nuclei 

are irregular and often clefted. One or more, usually 

large nucleoli are present. The volume of cytoplasm 

is variable, but often abundant and may contain 

vacuoles.

L3: blasts are moderate-large in size and 

homogeneous. The nuclei are regular and round-oval 

in shape. One or more prominent nucleoli are 

present. The volume of cytoplasm is moderate and 

contains prominent vacuoles. 

Figure 3 shows the great variability in shape and pattern of 

the blast cells according to the FAB classification.  
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Normal Blast L1 Blast L2 Blast L3 

Figure 3. Morphological variability associated to the blast cells  

according to the FAB classification. 

Our goal is to detect without differentiation the presence 

of all three types of blasts in the blood film. The goal is 

achieved by a sequence of phases which as been schematized 

in Figure 4. Once the previously described chain separates 

each lymphocyte in a sub-image, the proposed system 

extracts the morphological indexes in three subsequent steps: 

firstly processing the membrane, then the cytoplasm and 

finally the nucleus. All processed indexes are in input to the 

classifier system which performs the classification. 
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Figure 4. Structure of the feature extraction module and  

the classifier module. 

A. Lymphocyte membrane selection 

Let us now discuss each step composing the membrane 

selection phase of the external membrane. Figure 5 shows the 

main steps and examples of input/output images: 

#1. Sobel edge enhancing. This step enhances the borders of 

the membranes [9] in order to better perform the 

subsequent edge detection steps. An edge-enhanced gray-

level image is hence produced. This processing step is 

recommended since it helps to better segment grouped 

cells (i.e., the second and third input images in Figure 5). 

#2. Adaptive Canny edge detection. This step reconstructs the 

borders of the membranes. Canny-based filters [10] have 

to be preferred for their intrinsic capacity to ensure in 

output a continuous edge. The output of this step is a 

binarized image (third row in Figure 5). The standard 

deviation of the Gaussian filter used in the Canny operator 

has been adapted to 1/15 of the measured average cell 

diameter D. Experiments show that this value allows the 

filters to “match” the estimated membrane thickness. A 

complete description of the estimation of the average cell 

diameter is available in [7]. 
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 Figure 5. From the lymphocyte gray-level sub-image, to the selection of the 

external membrane. Examples of isolated (first column) and grouped 

lymphocytes (second and third column) are plot. 

#3. Structured image dilation. The morphological operator 

called dilation [10] has been used to better connect 

separated points of the membrane border and to make the 

perimeter of the cell as a connected item (thicker more 

than one pixel) as shown in the fourth row in Figure 5. 

Again, the structured element used by the dilatation 

operator has been adapted to 1/15 D.

#4. Hole filling. This step consists of filling internal holes of 

the connected element with biggest area in the processed 

image [10,11]. The biggest connected element in the 

region of interest is indeed the membrane perimeter (fifth 

row in Figure 5). This hypothesis is reasonable since the 

red cells are mostly smaller than the lymphocytes and 

with an evident “hole” in the center. 

#5. Structured image erosion. This step applies to the binary 

image in input an erosion morphological filter with a 

structuring element composed by a square 2x2 matrix. 

This step reduces the spur elements that can be left along 

the membrane edges. The usage is more related to 
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visualization aspects. Experiments showed that it can be 

considered as optional since it not produces appreciable 

increments in the classifier’s accuracy.   

The correctness of previously performed steps can be 

controlled: we expect a cell perimeter slightly around the 

value D. In our analysis we consider as correct the values of 

the perimeter that ranges between 0.95-2.5 of D. If the 

perimeter value is out of the range, wrong membrane 

detection can be occurred. In this case, the processed sub-

image is discarded. That avoids further errors in the feature 

extraction phase or classification errors. If the perimeter 

value is in the fixed range, the algorithm segments the 

processed image, it selects the connected element with the 

biggest area and it crops from the original image the selected 

lymphocyte (Figure 6). 
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 Figure 6. Selection of the lymphocyte cell.  
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 Figure 7. Lymphocyte histogram analysis for  

nucleus and cytoplasm selection.  

B. Nucleus and Cytoplasm selection 

The phase of nucleus and cytoplasm selection exploits the 

cell image resulted from the previous step (Figure 6). The 

selection of the two inner areas of the cell that correspond to 

the nucleus and cytoplasm can be done by a thresholded 

segmentation. That arises from the fact that the cytoplasm 

and the nucleus are almost uniform areas with respect to the 

gray level intensity.

In this situation the gray level histogram of cells tends to 

be bimodal. Figure 7 shows a typical lymphocyte cell 

extracted from the blood film by using the described 

processing chain (on the right) and its histogram. The 

principal components of the histogram are shown with capital 

letters. The (A) peak can be discarded since it comes from the 

lateral zero-valued pixels outside the cropped areas in the 

rectangular image. The peaks (B) and (C) come from the 

nucleus and cytoplasm areas respectively. The difference in 

height of the peaks is typical since the area of the cytoplasm 

is lower than the area of the nucleus. 

The threshold level used to segment the nucleus from the 

cytoplasm in the cell image can be found as the threshold that 

better separates the two distributions B and C of gray level in 

the histogram. In the literature many techniques are available 

[9,10]. In this paper we used the Otsu's method [12] for its 

absence of assumptions of the models generating the 

distributions on the image. The method simply chooses the 

gray-level threshold to minimize the intra-class variance of 

the thresholded black and white pixels. Experiments showed 

a good performance of this method in separating the nucleus 

from the cytoplasm. Figure 7 shows the result of the 

segmentation for a lymphocyte image. 

Also in this phase it is possible to control the exactness of 

the selection procedure by controlling the area’s value of the 

extracted nucleus. As a matter of fact, the nucleus’ area must 

have a value smaller than the area of the external membrane. 

In addition, we evaluated that the value must be above a fixed 

threshold (50% of the membrane area in our study) since we 

assume that a classifiable lymphocyte must have a 

considerable nucleus. Otherwise the cell can be squeezed 

during the preparation of the film and, of course, it should be 

discarded from subsequent analysis. 

C. Features extraction 

Previous steps produced from the selected image of the 

lymphocyte six sub-images: 

three images containing portions of the original gray-level 

image (i.e., at the bottom of Figure 7); 

three black-and-white sub-images which represent only 

the borders of the membrane (i.e., at the bottom in Figure 

6), the cytoplasm and the nucleus. 

The first three sub-images can be used to extract features 

regarding the gray-level intensity pattern of the image (i.e., 

granularity of the color, uniformity). From the three black-

and-white sub-images we can easily measure morphological 

features such as the perimeter, the area, the momentums of 

the image, etc. 

At this stage, the extracted features from the sub-images 

will be used by the classifier to identify the presence of the 

ALL. The choice of the features has been driven by 
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suggestions of hematopathologist present in the literature 

[3,5]. In fact, experts classify cells by qualitatively evaluating 

the same cells properties. From the 3 black-and-white images 

the system processes the membrane parameters such as Area, 

Perimeter, Convex Area, Solidity, Major Axis Length, 

Orientation, Filled Area and Eccentricity defined as standard 

procedures present in the Matlab Image Processing Toolbox 

[10]. In addition we processed the ratio between the cell and 

nucleus areas, the nucleus’ “rectangularity” (the ratio 

between the perimeter of the tightest bounding rectangle and 

the nucleus perimeter), the cell “circularity” (the ratio 

between the perimeter of the tightest bounding circle and the 

cell perimeter). From the three gray-level sub-images we 

extracted the mean gray-level value and its standard deviation 

in order to represent the variation of the intensity in the 

nucleus. Total number of extracted features is 23. 

IV.EXPERIMENTAL RESULTS 

The proposed system has been tested using sample-images 

extracted from an image repository provided by the M. 

Tettamanti Research Center for Childhood Leukemias and 

Hematological Diseases, Monza, Italy. The dataset consists of 

113 images and it globally contains about 8400 blood cells, 

150 of them are lymphocytes labeled by expert oncologists as 

normal or blast.  

Our goal was to create the final classifier and test the 

subsystem proposed in this paper. For this reason we prepare 

150 sub-images containing the lymphocytes, simulating the 

functioning of the previous modules of the overall systems. 

This operation allows to create a human-classified training 

dataset for the classifier that we want to design. The system 

has been tested in two phases.  

A. Testing the selection modules 

In the first test phase we tested the first three modules of 

the subsystem: the membrane selection module, the 

cytoplasm selection module and the nucleus selection 

module. In particular, those modules (Figure 4, left column of 

modules) correspond to the steps described in section III, and 

their accuracy is related to the concept of correct selection.

The case of correct selection is not easily definable by 

automatic procedures since we deal with images that are not 

synthetic but real. For this reason, we checked the areas 

selected by the modules by one-by-one manual observation. 

We consider a membrane and a nucleus of a lymphocyte as 

correct-selected if their membranes are correctly contained 

into the selected areas processed by the selection algorithms.  

The free parameters of the proposed chain in section III 

(the dimensions of the structuring elements for morphological 

filters defined in step #3 and #5) were empirically set by 

trials on the dataset. As a result, the selection modules 

described in section III achieved correctly the selection task 

in 148 sub-images out of 150.  

Figure 8 compares the two cases of not-correct selection 

compared to a case where correct selection occurred. It can 

be seen that the problem is related to the presence of compact 

stacks of cells around the lymphocyte. In this situation, the 

membrane thickness is very thin, and the algorithms can not 

correctly segment the areas. Notably, it does not happen in 

red-cell/lymphocyte adherences, but only in two cases of 

adherences between two lymphocytes. That is related to the 

fact that, in the case of adherences between lymphocytes, the 

differences in contrast between the two cells are much less 

than in the case of red-cell/lymphocyte adherences. The latter 

case is much more probable than the former because the 

percentage of red cells in the blood film is higher than 

lymphocytes. 

(A) 

(B) 

(C)

Figure 8. Correct (A) and wrong membrane selection (B,C).  

Arrows point at membrane adherences between lymphocytes. 

B. Creating and testing the classifier 

In the second test phase we created and validated the final 

module of the system: the classifier. Hence, we processed the 

150 sub-images present into the dataset obtaining the features 

described in the previous section. As reported, it occurred 

two cases of wrong membrane selection and the related 

features that have been extracted suffer from errors: for 

example the nucleus area is overestimated (Figure 8, last 

row). The capability of the selected features in separating the 

normal lymphocyte from the blasts can be qualitatively 

evaluated by plotting the classes with respect to the three 

most relevant features: cell area, nucleus area and gray 

intensity of the cytoplasm (Figure 9). The most relevant 

features have been found by applying a feature selection 

technique called forward selection based on nearest neighbor 

classifier evaluated with Leave One Out method [13].  

The evaluation of the system accuracy has been performed 

by N-fold cross-validation technique [13] where N was 

chosen equals to 10. The first classifier family we considered 

is the nearest neighbor classifiers (kNN). Different kNN 

classifiers have been created ranging the number of nearest 

neighbors k from 1 to 15 and considering the Euclidean, 
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cubic and Manhattan norm [13]. Feed-forward neural 

networks with log-sigmoidal activation function (FF-NN) and 

with two hidden layers have been created by ranging the 

number of the hidden units from 2 to 50. We used the Back-

propagation method present in the Matlab Neural Network 

Toolbox [10]. Also a linear Bayes Normal classifier [13] has 

been used as reference using the routines available in the 

well-known Matlab toolbox for pattern recognition PRTool

[14]. 
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Figure 9.  Separation of classes using the three most relevant features: cell 

and nucleus normalized area and relative gray intensity of nucleus. 

TABLE 1. Accuracy of the best classifiers  (23 features). 

Type 
Mean

error 

Standard

deviation

Execution

time
Note

LINEAR 0.040 0.0344 601 µs 
Bayes normal 

classifier 

KNN 0.0267 0.0344 1254 µs 
K=1

Euclidean norm 

FF-NN 0.0133 0.0281 1001 µs [20,1] Neurons 

Table 1 reports the results of the best classifier for each 

family that as been found during the validation test (on a Intel 

Centrino 1,4Ghz, Windows XP, 750 Mb Ram, Matlab 7, 

PRTools, version 4.0.13). Notably the feed-forward neural 

network with 20 hidden neurons achieves the lowest mean 

miss-classification error (with lowest standard deviation). 

Interestingly, the corresponding processing time is not the 

highest with respect to other tested classifiers. That is 

satisfactory since the final systems must be built exploiting 

enlarged dataset. In fact, the computation complexity of the 

kNN classifier is almost proportional to the training dataset 

size. On the contrary feed-forward neural networks’ 

complexity is related to the number of neurons which tends to 

be much lower than the number of training samples. 

Results show that the automatic classification of Acute 

Lymphocytic Leukemia starting from lymphocyte images is 

possible and accurate. Authors believe that the usage of 

inductive classifier (i.e., feed-forward neural networks) is 

very suited to the application and higher accuracy can be 

achieved when the number of sample images will be 

increased. 

V. CONCLUSIONS 

This paper presented a methodology to achieve a fully 

automated classification of the Acute Lymphocytic Leukemia  

from microscope blood-film images. The methodology is 

based on the morphological analysis of blood’s white cells 

(lypmphocyes). Results show that the presented methodology 

is achievable and it offers remarkable classification accuracy. 

Further studies will be focused on enhanced adaptive 

segmentation modules, the impact on classification accuracy 

of enlarged sample dataset and the test of the overall system. 
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