
A Low-Redundancy Approach to Semi-Concurrent Error Detection in Data Paths

Anna Antola, Vincenzo Piuri, Mariagiovanna Sami
Department of Electronics and Information, Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Phone: +39-2-2399-3516, Fax: +39-2-2399-3411, Email: {antola, piuri, sami}@elet.polimi.it

Abstract

A high-level synthesis approach is proposed for design of
semi-concurrently self-checking devices; attention is
focussed on data path design. After identifying the
reference architecture against which cost and
performances should be evaluated, a simultaneous
scheduling-and-allocation algorithm is presented,
allowing resource sharing between nominal and checking
data paths. The algorithm grants that the required
checking periodicity is satisfied while minimizing
additional costs in terms of functional units. Risk of error
aliasing due to resource sharing is analysed.

1: Introduction

The problem of defining High-Level Synthesis
techniques for design of self-checking or even self-
diagnosing ASICs has been recently approached from
some different points of view; attention has been focused
in all instances on scheduling, allocation and binding of
Data Paths, it being considered that FSM-related
techniques could be separately adopted for the control
unit (e.g., see [1]). Thus, in [2] and in [3] the problem of
autonomous error detection and recovery from transient
faults was in particular taken into account; other authors
dealt on the contrary with permanent faults, the principal
aim being that of achieving detection (and, possibly,
location) of faults with impact on performances as low as
possible (ideally, nil) and with limited area redundancy.

Solutions presented in the literature have taken into
account concurrent error detection, such that checking is
performed - at the latest - at the end of the complete
execution of the DFG. In [3,4], the authors presented a
code-based solution valid for DFG’s consisting of
arithmetic operations only; scheduling and allocation
algorithms were proposed allowing to grant detection of
any single fault (within a fairly comprehensive fault

model) with low error latency and limited area
redundancy, checking being performed at suitable
intermediate points (as well as on primary outputs) so as
to minimise the number of checkers while avoiding
aliasing. In [4] a technique was introduced granting not
only fault detection but also fault location, that exploits at
each control step the presence of unused non-redundant
resources to repeat operations in the DFG; in this case, the
null-redundancy requirement (at least, as far as functional
units are concerned) leads to the drawback that for some
operation neither checking nor location are feasible.

In the present paper, we introduce a semi-concurrent
self-checking technique. The rationale justifying adoption
of semi-concurrent testing derives from the low fault
occurrence rates granted by present silicon technologies,
that - excepting the case of extremely severe operation
environments - makes it reasonable to perform checking
operations not concurrently with each nominal operation
cycle but periodically, in correspondence of each N-th
operation cycle (N being suitably defined with respect to
the application and the expected fault occurrence rate).
Such techniques have been proposed in the past for
regular architectures - typically, linear arrays or
rectangular arrays [5], [6] - where they allowed to exploit
a limited number of redundant units to cyclically duplicate
operation of nominal units so as to achieve detection as
well as identification of faults; nominal input data are
always used for checking purposes, so that error latency
actually derives not only from the periodicity of checking
operations but also from possible non-activation of
existing faults by the present input data. The results
achieved by these approaches thus offer a compromise
between costs (expressed in terms of area redundancy)
and checking efficiency (expressed mainly in terms of
error latency). Obviously, semi-concurrent techniques are
effective for systems that operate on a continuous flow of
data; such systems cannot be excluded from nominal
operation in order to undergo an off-line test phase (even
if by means of BIST techniques, see [7]), and on the other
hand the flow of input data can be considered as a long

sequence of random test vectors, leading to acceptable
fault coverage.

The semi-concurrent self-checking approach
proposed in the present paper relates to arbitrary
application-specific systems, described by a Data Flow
Graph (DFG) on which no constraints are given either in
terms of structure or in terms of allowable operation
types. We concentrate - as authors of previously recalled
papers have done - on synthesis of the Data Path; while an
implicit form of checking is performed on the controlling
FSM as well, through the commands received by the Data
Path and the results produced, if such checking is not
deemed adequate a totally concurrent self-checking FSM
can be designed by proper rules [1]. The aim of our
approach can be summarised as follows:

for a given optimum nominal scheduling and
allocation of a DFG, and for a given periodicity of
checking, synthesise a modified Data Path that will
allow semi-concurrent self-checking with minimum
redundancy (in terms of functional units) and
minimum risk of aliasing

where periodicity of checking is defined as the ratio
between the number of control steps between two
subsequent self-checking iterations and the number of
control steps required by the nominal schedule, while
aliasing occurs whenever the system fails to detect an
error present in its results.

In Section 2, we define the fault model and the rules
by which periodicity of checking is computed. In
correspondence, we present the reference architecture
against which results produced by our synthesis technique
will be evaluated. In Section 3, we define the synthesis
approach for minimum-cost semi-concurrent self-checking
data paths; high-level synthesis is performed by means of
simultaneous scheduling and allocation. DFGs discussed
in current literature on fault-tolerance related topics will
be used as running examples. In Section 4, the problem of
aliasing will be examined and the guidelines by which the
application designer can evaluate the risk of aliasing for
the specific application will be introduced.

2: Fault assumptions and reference
architecture

The approach here chosen to achieve semi-concurrent
self-checking operates by modifying standard high-level
synthesis techniques, so that the synthesised data path
grants self-checking properties; as a consequence, the
fault model adopted is of necessity a functional one,
technology-independent.

We assume initially that:

a) faults are concentrated in functional units; the
connection network is fault-free, and so are the
registers. Such restriction is consistent with
assumptions made by other authors (see, e.g., [8]) and
is justified by the relative complexity of functional
units with respect to switches and registers; in the final
section, anyway, it will be seen that fault assumptions
can be relaxed, leading to a more comprehensive fault
model;

b) at most a single fault (i.e., a single faulty unit) is
present in the system. Since the approach relates to run-
time checking rather than to end-of-production testing,
it is sufficient to choose an adequate frequency for
semi-concurrent self-checking operations in order to
make the assumption acceptable; in the case of a very
complex system, it is also possible to partition it into
sub-systems each individually provided with self-
checking capacities, thus allowing for presence of a
larger number of faults.

Given these assumptions, we define a reference
architecture against which architectures provided by our
high-level synthesis approach will be evaluated. The
nominal architecture is defined as that initially designed
without any self-checking capacity, scheduling, allocation
and binding being performed on the basis of cost and
performance requirements only. We assume here latency
as the primary figure of merit, so that the number kN of
control steps required coincides with the length of the
critical path, but this does not constitute a restriction for
our approach. If by τ we denote length of the clock cycle,
latency of the nominal architecture will be lN=kNτ. Based
on fault information derived from technology as well as
from data on operation environment, the checking
periodicity is evaluated as the minimum time tC to be
allowed between two successive checking actions; since
nominal data are used in semi-concurrent self-checking,
allowance must be made for the possibility that nominal
input data will not excite a fault, thus making checking
periodicity tighter. Actually, we will refer to the relative

checking periodicity, computed as the ratio P
t

l
C

N

=








 ; if

P=0, the system is partitioned into subsystems each with
latency suitably lower than lN, and the approach applied to
each subsystem individually.

An independent checking architecture is now
designed starting from the DFG of the nominal circuit and
implementing the lowest-cost data path compatible with
P. If initial fault information allows it (i.e., if tC >> lN), a
straightforward resource-constrained solution can be
adopted leading to the design with minimum number of
functional units; otherwise, a time-constrained solution
with tC as the allowable latency and cost as the secondary

figure of merit will be adopted. Let lR= kRτ be the latency
of the independent checking circuit; we must add to it the
time lC= kCτ required for checking results on the critical
paths. Assuming that a checker operates in one control
step, kC depends only on the chosen schedule and on the
number of checkers available. Periodicity of checking is

satisfied if tC≥ lR + lC (or P
l l

l
R C

N

≥
+







).

Operation of the complete self-checking reference
architecture is as follows:
1. The same set of nominal data (checked data) is fed to

both nominal and checking circuits. The two circuits
then operate separately; in particular, after kN control
steps the nominal circuit will receive a new set of input
data and start operating on them. The primary outputs
produced by the nominal circuit operating on the
checked data are stored in a suitable register until the
corresponding value has been computed by the
checking circuit; then checking is performed and the
register in the nominal circuit is freed. Self-checking
checkers are used to perform checking; the number of
checkers depends on the DFG as well as on latency and
cost requirements;

2. After kR+kC control steps, either a checking operation
has detected an error and an error signal is activated, or
both circuits are declared fault-free; after P iterations
by the nominal circuit, both circuits receive a new set
of checked data and step 1. is repeated.

The two circuits do not share any resource, so that in the
single-fault assumption if results produced are identical
we can safely state that operation of both is error-free
(either no fault is present or a possible fault is not excited
by the nominal set of input data). In other words, no
aliasing (by which error-affected results would be
considered correct) is possible. Periodicity of checking is
satisfied by construction; the total number of resources
required - in terms of functional units - is given by the
sum of resources in the nominal and in the checking
circuit. If a minimum-cost checking circuit has been
designed, in particular, we need only add one to each type
of functional unit required by the nominal circuit. A rough
evaluation of the controlling FMSs’ complexity identifies
a “checking” FMS with kR+kC states and a simple
controller granting that both data paths are fed the same
data at each PkN control steps.

In general, in the nominal circuit not all functional
units present will be actually used in each control step;
based on this consideration, we explore the possibility of
reusing the “nominal” functional units for checking
operations, so as to lower the cost of the self-checking
data path. Constraints ruling such reuse will be described
in the next section, where the scheduling-and-allocation

algorithm that allows creation of a checking circuit
sharing the nominal circuit’s resources will be presented.

3: Resource sharing for minimum-cost
semi-concurrent self checking

To reduce cost of the semi-concurrent self-checking
data path, we envision the possibility of scheduling and
allocating both nominal data path and checking data path
onto the same, shared, resources. More precisely, we
attempt to execute two separate DFG’s, corresponding to
nominal and checking processes, by making use of the
nominal data path, increasing its set of registers and
modifying its interconnection structure but without
increasing its set of functional units or by adding the
minimum number of such units. To achieve this goal, a set
of necessary conditions must be verified first:
a) to grant that probability of aliasing is much lower than

1, we must ensure that no operation oi in the
unscheduled DFG will be performed in both nominal
and checking data path by the same functional unit fj.
This implies restrictions on scheduling and allocation
of the checking DFG;

b) scheduling of the checking DFG onto the shared
resources must be possible within the periodicity P
evaluated for the envisioned application.

A preliminary analysis of the nominal data path leads to
possible increase of the set of functional units. In
particular:
1) whenever, for a given type tk of functional unit, one

instance only is present in the nominal data path, a
second instance must be added to achieve condition a);

2) whenever, for a given type tk of functional unit, all
instances are used in each control step of the nominal
schedule, a further instance must be added to achieve
condition b) above.

Condition 1) grants that proper scheduling and allocation
of the checking data path minimising aliasing will be
possible, condition 2) grants that such schedule will
require less than infinity number of control steps. If the
two conditions lead to adding as many functional units as
required by the reference architecture described in Section
2, resource sharing is excluded a priori since it would lead
to a design aliasing probability that might be higher than
in the reference architecture without decreasing its cost.

Let us first describe informally the core concepts of
our approach, before presenting the implementing
algorithm. We refer from now on to nominal and checking
DFG’s thus denoting, respectively, the fully scheduled
and allocated DFG corresponding to the nominal data
path and the (levelized, but as yet neither scheduled nor
allocated) DFG corresponding to the checking data path,

that must be scheduled over at most PkN control steps.
Scheduling and allocation of the nominal DFG are kept
unchanged; the problem thus involves scheduling and
allocation of the checking DFG only.

We consider a sequence of PkN control steps, over
which the nominal schedule is repeated P times;
information concerning allocation of functional units in
the nominal data path is kept available. In any control step
ck (1≤k≤ PkN) all “ready” operations in the DFG are taken
into account, an attempt is made to simultaneously
schedule and allocate them - satisfying suitably defined
priorities - onto available (“free”) functional units such
that condition a) is satisfied; for all unscheduled
operations, priorities are updated and the attempt is
repeated in the following control step. (The set of
functional units consists of the nominal ones plus,
possibly, those inserted to satisfy rules 1 and 2). While
availability of a functional unit fj in control step ck is
determined by examining schedule and allocation in step
ck of the current replica of the nominal schedule, data
input to the scheduled operation are always checked
against those input to unit fj in the first iteration of the
nominal schedule (i.e., the one on whose results the
checking will be performed). This mixed scheduling-and-
allocation step is repeated until either the whole checking
DFG is scheduled in a satisfactory way over the PkN

control steps, or no such schedule is found. In the first
case, a resource-sharing minimum-cost self-checking
solution has been found. Registers for the checking data
path are identified and allocated, independently of the
nominal ones; the choice of excluding possibility of
sharing for the set of registers is justified by the
consideration that lifetimes for variables in the checking
data path will be usually rather long, so that reusability of
registers belonging to the nominal data path would be
reduced. Finally, the complete interconnection network is
created and the control FSM is synthesised.

If on the contrary no acceptable schedule is found,
rather than attempting alternative schedules with the same
set of resources we decide to increase such set by adding
(one at a time) a functional unit of one of the used types.
A heuristic approach is adopted to choose the type of
functional unit by which this set is increased, as follows:
I. for each type tk of functional unit, the number of times

scheduling “ready” operations of the corresponding
type has been delayed in the checking DFG schedule is
counted, and the first control step in which such miss
occurred is recorded; the counter is incremented by one
for each control step in which a delay occurs, whatever
the number of operations delayed;

II. a functional unit corresponding to the highest count and
- for equal count value - to the earliest miss is added to

the set; in the case of multiple units with the same
characteristics, the lowest-cost one is chosen.

This solution attempts to achieve high probability of
anticipating the schedule of a larger number of delayed
operations without undue increase in computational
complexity.

Having thus outlined our general philosophy, we must
specify the scheduling-and-allocation technique as well as
the priority figure chosen. As regards priority, a widely
used figure is mobility, which - in the case of time-
constrained scheduling - is evaluated for each operation oi

in the DFG as the difference mi between its ALAP and its
ASAP labels [9], priority increasing with decreasing
mobility values. We suggest here to use an extended
mobility evaluated as ei=(P-1)kN+mi-kC, i.e., the original
mobility in the nominal DFG increased by the additional
number of control steps by which the checking scheduled
DFG can extend beyond the nominal scheduled DFG,
decreased by the number of control steps required to
check results on critical paths. Whenever a ready
operation cannot be scheduled in the present control step
and has to be delayed, its mobility is decreased by one and
so is the mobility of all its (immediate or indirect)
successors. Note that whenever an operation oi such that
ei=〈0〉 cannot be scheduled in the present control step it
can be immediately stated that a schedule within the given
time bounds is impossible; thus, failure of the attempt can
be declared even before completing analysis of the whole
DFG.

The scheduling-and-allocation technique can be
summarised as follows:
1) At any given control step ch, for each type tk of

functional unit determine the set O of ready operations
that can be allocated on units of this type and the set
Fuk of functional units of type tk that are not allocated
in the nominal DFG during step ch.

2) Whenever neither O nor Fuk are empty, create a
bipartite graph whose nodes represent, respectively,
entries in O and in Fuk and a node associated with
oi∈O is connected by an edge to a node fuk

j∈Fuk iff
operation oi in the nominal DFG has not been allocated
to fuk

j. Edges are labelled with the extended mobility of
the operations.

3) A matching is attempted on the bipartite graphs thus
created. Whenever a complete matching of operations
onto functional units is achieved, all operations are
scheduled in the control step and the allocation is given
by the matching. Otherwise, an “optimum” non-
complete matching is sought, where weights are taken
into account. All unmatched operations are delayed to
control step ch+1, and the relevant extended mobilities
are updated.

Steps 1 to 3 are repeated for increasing values of h, until
either the whole DFG has been scheduled and allocated or
an operation with zero mobility cannot be matched, in
which case failure is declared and a renewed attempt is
made with suitably increased set of functional units. It
may be worthwhile noting that the number of control steps
finally required by the checking DFG may be less than
PkN, since at some control steps the number of “free”
resources may be higher than that foreseen by the
reference minimum-cost architecture. In any case,
checking periodicity will obviously be an integer multiple
of kN.

As an example, we consider the AR filter discussed
also in [2,10], whose optimum time-constrained schedule
is given in Figure 1.

×

�

×

S3

�

S1

S2

S6

S4

S5

S8

S7

× ×

�

× ×

�

�

× ×

�

× ×

�

× ×

�

× ×

�

× ×

�

� �

7

42

5

1

6

3

1211

13

10

8

14

9

2221

25

20

26

19

1816

23

15

24

17

27 28

Figure 1: Optimum scheduling for AR filter

A minimum-resource allocation - considering functional
units only - involves four multipliers (m1, m2, m3, m4) and
two adders (a1, a2) with the following possible binding:

functional unit operations in the DFG
m1 1, 9, 15, 19
m2 2, 10, 16, 20
m3 3, 11, 17, 21
m4 4, 12, 18, 22
a1 5, 7, 13, 23, 25, 27
a2 6, 8, 14, 24, 26, 28

It is kN=8; we assume as periodicity of checking P=3,
with no restrictions on the number of checkers (a checking
operation requires one control step). Semi-concurrent
checking then requires at most 23 control steps to
schedule the checking DFG, the 24th step being reserved
for checking. The reference architecture is designed
accordingly; the DFG can be scheduled over 21 control

steps by using just one multiplier, one adder and one
checker, i.e., the minimum number of resources.

The algorithm is now applied, attempting first to
schedule a checking DFG within 23 control steps, without
increasing the set of resources. The attempt fails at step
23, where operations 27c and 28c still remain to be
scheduled and no free adder is available. Count of delayed
types of operations gives 7 delays for multiplications and
20 for additions: adder a3 is then inserted. The scheduling
and allocation algorithm is applied once more, leading to
the solution summarised in Figure 2 and in Table 1: where
rows correspond to control steps and columns to
functional units, entry (a,b) denoting the operation - either
of nominal or of checking DFG - performed by functional
unit b in control step a; operations belonging to the
checking DFG are denoted by the original ordering
number followed by the letter c.

Table 1: Scheduling and allocation
for the self-checking AR filter

control
step

m1 m2 m3 m4 a1 a2 a3 checker

cs1 1 2 3 4
cs2 15 16 17 18 5 6
cs3 2c 1c 4c 3c 7 8
cs4 9 10 11 12 23 24 5c
cs5 16c 15c 18c 17c 13 14 6c
cs6 19 20 21 22 8c 7c 23c
cs7 10c 9c 12c 11c 25 26 24c
cs8 27 28 13c
cs9 1 2 3 4 14c
cs10 15 16 17 18 5 6
cs11 20c 19c 22c 21c 7 8
cs12 9 10 11 12 23 24 25c
cs13 13 14 26c
cs14 19 20 21 22 27c 28c
cs15 25 26 out. 27
c16 27 28 out. 28

It can be noticed that semi-concurrent checking with
frequency actually higher than that required can be
achieved by introducing just one extra adder and one
checker; checking is performed at each second iteration of
the nominal DFG, results of the checking DFG being
available already at the 14th control steps, so that one
primary output is checked in the 15th step and the other
one in the 16th. Cost and performances are thus better
than in the reference architecture.

Some considerations are possible concerning a
comparison of costs for the control FSM’s in the reference

×

�

×

�

S1

7

42

5

1 × ×

�

�

6

3

12

�

11

13

10

8

� 14

9

�

2221

25

20

� 26

19

�

1816

23

15

� 24

17

� 27 � 28

�

� �

�

�

�

� �

� �

� �

�

�

�

�

�

�

�

�

�

�

� �

checking

checking

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×
7

42

5

1

6

3

1211

13

10

8

14

9

2221

25

20

26

19

1816

23

15

24

17

27 28

7c

4c2c

5c

1c

6c

3c

12c11c

13c

10c

8c

14c

9c

22c21c

25c

20c

26c

19c

18c16c

23c

15c

24c

17c

27c 28c

Figure 2: Scheduling for AR filter with semi-concurrent self-checking capability

and in the resource-sharing architectures. Since the
number of control steps in both instances is given by
design requirements, the number of states of the two
machines has the same upper bound; in our example, the
cost of the FSM for the resource-sharing architecture will
be in effect much lower. As for the width of the control
word, we should compare the sum width of two control
words for the reference architecture with the global width
for the resource-sharing one; while no general evaluation
is possible, it is conceivable that suitable coding will in
general allow more compact control words for the
resource-sharing solution.

4: Limits and applicability conditions

As suggested in Section 3, resource sharing between
nominal and checking data paths may lead to risk of
aliasing; the basic condition guiding allocation of the
checking DFG, by which no operation could be allocated
to the same functional unit in nominal and checking data
path, is only the minimal condition to be satisfied to avoid
certainty of aliasing on the individual operation.

A path in a DFG can be considered as an ordered
sequence of operations. If we examine the scheduling and
allocation obtained for a general DFG by means of the
algorithm outlined in Section 3, it is quite probable that,
referring to a path from primary inputs to a primary
(thence checked) output in both nominal and checking
DFGs, there will be one or more shared functional units
used to implement different operations of the same type
along the path: this introduces risk of aliasing.

Let us examine the possible instances on a simple
sequence of two operations of the same type; results can
be applied recursively to more complex sequences.

Let o1, o2 be two identical operations constituting a
sequence o1(o2(a,b),c)): assume presence of two identical
functional units fu1, fu2 whose allocation leads, in the
nominal DFG, to o1⇒fu1¸o2⇒fu2, and in the checking
DFG to o1⇒fu2¸o2⇒fu1. Assume further that fu1 is faulty
and fu2 is fault-free. We denote by f1

*(x,y) the result
produced by the faulty unit operating on inputs x,y and by
f2(x,y) the results produced by the fault-free unit operating
on the same inputs. Results produced by the allocated
operation sequence in the two paths can now be denoted,

respectively, as f1
*(f2(a,b),c)) and as f2(f1

*(a,b),c)). Aliasing
occurs only if f1

*(f2(a,b),c))= f2(f1
*(a,b),c)) and results are

affected by an error. Possibilities are as follows:
• f2(a,b)= f1*(a,b): this occurs only if the inputs a and b

do not excite the fault. In this case, results are both
error-free (error masking, not aliasing, occurs). Then:
• either the pair of inputs f2(a,b),c excites the fault in

fu1, in which case results produced by the two
sequences will be different and no aliasing on the
whole sequence is possible, or

• results of sequence f1
*(f2(a,b),c)) are affected by

error, and different from the ones of sequence
f2(f1

*(a,b),c)): no aliasing occurs;
• f2(a,b)≠ f1*(a,b): inputs a,b excite the fault in fu1. Let us

denote f2(a,b)=d, f1
(a,b)=d. Then:

• if inputs d,c do not excite the fault, it is f2(d,c)=
f1

(d,c); if f2(d,c)≠f2(d,c), the error is detected;
otherwise, both results are correct and error masking
occurs;

• if inputs d,c excite the fault, it is f2(d,c)≠f1
*(d,c); in

this case, aliasing may occur if f1
(d,c)= f2(d,c).

It will be noticed that conditions under which aliasing
might occur are fairly restrictive and depend on
characteristics of the functional units as well as on the
specific set of data. Thus, it will be up to the application
designer - based on information available for the
application as well as for the technological
implementation - to evaluate the actual aliasing
probability.

5: Extension of the fault assumptions and
conclusions

Let us now consider how possible faults affecting any
component of the Data Path - other than functional units -
may be detected by our proposed methodology. We keep
the single-fault assumption, extending possibility of errors
to register and to switches in the interconnection network
(we assume point-to-point, multiplexer-controlled
interconnection networks).

Refer first to faults affecting register. Registers are
not shared between nominal and checking data paths:
thus, a fault affecting a register will affect either the
nominal or the checking computation and will be detected.
No aliasing is possible; error masking may occur if the
data do not excite the fault.

Coming to faults affecting multiplexers, we envision
a classical architecture in which multiplexers are present
only on inputs of registers and of functional units. If a
multiplexer on a register input is faulty, the error can be
seen as if it were due to the register, and the previous
considerations hold. If, on the other hand, the faulty

multiplexer is on an input to a functional unit, the
consequent error can be seen as affecting a shared
resource, and possibility of aliasing (as seen in the
previous section) arise.

No proper set of benchmarks is available for the
problem here envisioned; we examined some other DSP
algorithms, in particular some filters discussed in high-
level synthesis literature, results being consistently
positive. An interesting example is constituted by the
elliptic filter [2], whose nominal (time-constrained)
structure requires four adders and operates on eleven
control steps. The minimum-resource reference
architecture involves one adder and one checkers and
requires 27 control steps (26 for the computation and one
for checking the last-produced output); thus, checking
periodicity of 3 is obtained. A shared-resource solution
can be designed without introducing any further adder,
operating in 16 control steps for the computation proper,
so that so that semi-concurrent checking can be achieved
with a periodicity of two.

References

[1] C. Bolchini, R. Montandono, F. Salice, D. Sciuto: "Self-
checking FSM's based on a constant-distance state
encoding", Proc. IEEE DFT 95, Lafayette, USA, Nov. 1995

[2] A. Orairoglu, R. Karri: "Automatic Synthesis of Self-
Recovering VLSI Systems", IEEE Trans. Comp., vol. 45, n.
2, Feb. 1996, pp. 131-142

[3] A.Antola, V.Piuri, M.G.Sami: "Optimising High-Level
Synthesis for Self-Checking Arithmetic Circuits", Proc.
IEEE DFT’96, Boston, MA, USA, November 1996

[4] A.Antola, V.Piuri, M.G.Sami: "A High-Level Synthesis
Approach to Optimum Design of Self-Checking Circuits",
Proc. EURODAC 96, Geneva, Switzerland, September 1996

[5] Y.H. Choi, D.S. Fussel, M. Malek: "Token-Triggered
Systolic Diagnosis of Wafer Scale Arrays", Proc. Int’l
Workshop on Wafer Scale Integration, Southampton, UK,
July 1985

[6] R.A. Evans, J.V. McCanny, K.W.Wood: "Wafer Scale
Integration Based on Self-Organization", Proc. Int’l
Workshop on Wafer Scale Integration, Southampton, UK,
July 1985

[7] K.D.Wagner, S.Dey: “High-Level Synthesis for Testability:
A Survey and Perspective”, Proc. Design Automation
Conference 96, Las Vegas, June 1996, pp.131-136

[8] B.Iyer, R.Karri: “Introspection: A Low Overhead Binding
Technique During Self-Diagnosing Microarchitecture
Synthesis”, Proc. Design Automation Conference 96, Las
Vegas, June 1996, pp. 137-142

[9] D. Gajski, N. Dutt, A. Wu and S. Lin: High-Level Synthesis,
Kluwer Academic Publishers, Boston, MA, USA, 1992

[10] G. Buonanno, M. Pugassi, M.G. Sami: "A High-Level
Synthesis Approach to Design of Fault-Tolerant Systems",
Proc. 1997 IEEE VLSI Test Symposium, Monterey, CA,
USA, Apr. 1997

