
ARITHMETIC CODES FOR CONCURRENT ERROR DETECTION
IN ARTIFICIAL NEURAL NETWORKS: THE CASE OF AN+B CODES

Vincenzo PIURI, Mariagiovanna SAMI, Renato STEFANELLI

Department of Electronics, Politecnico di Milano
piazza L. da Vinci 32, 1-20133 Milano, Italy

Abstract

A number of digital implementations of neural networks have been presented in recent lit-
erature. Moreover, several authors have dealt with the problem of fault tolerance; whether
such aim is achieved by techniques typical of the neural computation (e.g., by repeated
learning) or by architecture-specific solutions, the first basic step consists clearly in diag-
nosing the faulty elements. In the present paper, we suggest adoption of concurrent error
detection; the granularity chosen to identify faults is that of the neuron. An approach based
on a class of arithmetic codes is suggested; various different solutions are discussed, and
their relative performances and costs are evaluated. To check the validity of the approach,
its application is ezamined with reference to multi-layered feed-forward networks.

1. Introduction

Artificial Neural Networks (ANNs) offer an attractive solution approach for the in-
creasing demand of massive computation in many critical application areas (e.g. signal and
image processing, real-time control, etc.). Advances in integration technologies and archi-
tectural design now allow implementations at reasonable costs: even commercial systems
are by now available to large classes of users.

The possibility of VLSI or WSI implementation of ANNs and their application in
mission-critical areas lead to consider the associated problems of defect and fault toler-
ance. Several authors have dealt up to now with such problems in relation with specific
implementations of neural nets. Thus, for example, in [l] behavioral fault models are de-
fined with reference to multi-layered nets implemented by analog systems, and the impact
of the physical faults is examined at various abstraction levels. Following the same line,
in 121 a relationship is identified between physical defects and failures and the maximum
size of the device, again corresponding to a given analog implementation approach. Other
studies evaluate the intrinsic robustness of the neural paradigm [3] [4]; this implies the def-
inition of a behavioral error model at a very high abstraction level (related to the abstract
neural model) and the evaluation of such errors' effects onto the neural computation, in a
technology-independent way. In [5] redistribution of the computation and information has
been discussed to minimize the influence of faults onto the computation itself by exploiting
the intrinsic fault tolerance of the network.

If, on the contrary, an implementation-related approach is taken, architectural so-
lutions must be taken into account. A preliminary step consists in the identification of
the faulty element present in the network and in its subsequent confinement. External
testing - performed off-line - can detect the presence of a fault, but exact identification
of the faulty element is much more difficult. Conditions granting behavioral testability for
multi-layered feed-forward networks are presented in [6]. In the present paper, we sug-
gest instead to use concurrent-detection techniques suitable for digital implementations
of neural networks; while the solutions outlined are developed for the individual neuron

0-81M2837-5WL $03.00 8 1992 IBBE 127

128 1992 lntemtioml Workshop on Defect and Fault Tolerance in V U 1 Systems

and as such could be extended to arbitrary networks without impacting on the network’s
topology, we will analyze performances and costs for the particular case of multi-layered
feed-forward networks. Concurrent techniques, using the nominal data to perform error
detection, are particularly suited to mission-critical systems, where high system credibility
is the first mandatory requirement.

We consider first a very simple model for the individual neuron, derived from its basic
functionality as defined by zi = f,(ui - 8,) = fi(Cj w i l z j - e,), where 2; is the output
signal of the neuron, ui = cj w;jzj is the sum of the weighted inputs, 8; is a threshold
value and f, is an (a-priori, arbitrary) non-linear evaluation function.

The simplest, immediate implementation of such equation involves one-to-one map-
ping of the equation operators onto digital components; weights are stored in memory
elements, products wijzj are evaluated by digital multipliers, the summation is performed
by an n-input adder and a suitable circuit implementing the evaluation function gener-
ates the neuron’s output signal. The fault model we adopt to define our fault-detection
technique is based upon this structure and it locates the possible faults within the compo-
nents of the architecture (weight storage, arithmetic devices, function evaluator); as usual
in most fault-tolerance approaches, interconnections are assumed fault-free, unless other-
wise specified. Even though we do not for the moment make any specific assumption on the
technological implementation of such devices, we restrict our analysis to systems adopting
fized-point arithmetics (with the related implications on the functional error model).

Given such model of the neuron, first of all we will discuss different modified neuron
architectures, all based on the adoption of a class of arithmetic codes. The basic concepts
of such codes will be summarized in section 2, while the different neuron structures and
the sets of errors for which each grants detection will be analyzed in section 3. In section
4, a comparative evaluation of the different solutions (assuming one-to-one mapping of
the neural network onto a corresponding digital architecture) will be discussed.

2. The class of ar i thmet ic codes adopted: AN + B codes

Having chosen to make the individual neuron’s structure capable of concurrent fault detec-
tion, several architectural possibilities arise to achieve this goal. Focussing on arithmetic
codes is justified by a number of reasons: while being cost-effective as far as structure re-
dundancy is concerned, they grant efficient detection without any relevant time overhead.
Moreover - and most important - they will be seen to support effectively the fault models
we are concerned with, not only in the case of the arithmetic units present in the neuron’s
structure but also for the other components (in particular, storage units and function eval-
uator). Before discussing the modified neuron’s structure, we will briefly review the class
of codes adopted and their characteristics.

The main requirements guiding in choice of an arithmetic code for our application can
be summarized as follows:
a. error detection only is requested; the single-error assumption is accepted;
b. given the great complexity of neural networks envisioned for real-life applications, it

is important to keep the silicon overhead for the single neuron as low as possible;
c. the neural computation must not be modified; this is essential to grant that capabilities

of the network (learning, recall, generalization) be not affected with respect to the
initial, theoretical definition;
the ”hard-core” section, i.e., the subsystem not capable of error detection (and whose
faults would therefore be fatal to system’s credibility) must be as small as possible:
this implies, in particular, design of ”fail-safe” decoders.

d.

Concurrent Error Detection 129

We identified AN + B codes as capable of satisfying all the above, given reasonable choices
for A and B [7).

AN codes (the simpler subset of AN + B codes) are non-systematic codes in which
each nominal datum N is substituted by its coded representation C (N) via the linear
transformation C (N) = A x N , where the integer constant A is the code generator. Arith-
metic units - adders, subtractors, multipliers - are not modified by the adoption of the
coded data; the only difference with respect to the nominal structure is given by the num-
ber of bits required, that obviously increases with A. The coding unit is therefore a simple
multiplier; since A is a constant, its structure can be optimized to grant maximum com-
pactness and speed. Decoding is performed, for addition and subtraction involving coded
operands, by applying the linear antitransformation N = C(N) / A ; the same decoding
holds for multiplication whenever one operand only is in coded form. If both operands are
coded, for a multiplication the antitransformation becomes N = C(N) / A 2 . Whenever the
antitransformation produces a non-null residue, an error is detected. Aliasing is possible
whenever the error is a multiple of the code generator (A or A 2) ; a number of papers have
been published on optimum choice of A to minimize aliasing in the various arithmetic
units ([7]). In particular, it has been proved that choosing A = 3 gives satisfactory detec-
tion capacity for all arithmetic units in which a single fault induces an error that can be
represented as the addition of A z ~ ~ ; moreover, both coder and decoders are quite simple
and the bit overhead for each coded data element is just one bit. It can be noted that the
above error assumption holds for all single faults if suitable design techniques are adopted
for the arithmetic unit (see [E]).

A second set of codes, identified as AN + B, is derived from the previous one by
introducing a code displacement B , that must be an odd number, prime with respect to
A. The AN + B code is defined as the associated code to the AN code whenever the code
generator A is common to both. The A N + B code is again a non-systematic code, and the
arithmetic units need not be modified (excepting for the length of the operands) to perform
on coded data. Coding is achieved by applying the linear transformation C (N) = AN + B.
Decoding is obtained in acceptably straightforward manner if the operation performed is
an addition, in which case, denoting by R‘ the result of the operation on coded data, and
by R the corresponding uncoded result, it is R = (R’ - 2B) /A .

If the operation performed is a multiplication, the antitransformation in the general
case requires rather complex operations; for example, if both operands X and Y are
expressed in AN + E code, it is R’ = A’XY + ABX + ABY + B 2 , so that the computation
of R = XY involves also the subtraction of two terms depending on the operands. Given
the complexity of decoding, adoption of this new code is justified only if the performance
improvement is sufficiently good. In fact, the AN + E code grants that zero is not a
codeword, so that no aliasing will ever occur in the presence of an error and no latency
will occur in the presence of a fault. It has been proved that a code diplacement B = 1 is
sufficient to grant the above improvements.

3. Use of AN + B codes: modified neuron’s archi tectures

We consider now the application of the coding techniques described in section 2 to the basic
neuron’s structure. We take into account a number of possibilities, depending on which
inputs are coded, which code is adopted and what units are protected. We distinguish two
alternative approaches to propagation of error information; namely, we can detect presence
of an error locally on the single unit and create a separate network for propagation of error
information, or propagate the error information through the nominal system structure.

130 1992 International Workshop on Defect and Fault Tolerance in V U 1 Systems

3.1 Use of AN codes: local detection solutions

Let us consider first adoption of coding so as to protect ”conventional” arithmetic opera-
tions (multiplications and additions); the error information generated locally is propagated
by a separate network throughout the whole system. We can refer to one general modified
neuron’s architecture (see fig. 1) where code generators A , and Az may undergo different
choices, as follows:

A1 = 1, A2 = A: weights are coded, input signals are not. We term this solution
”Local Detection Coded Weight” architecture (LDCW). The results of the synaptic
products and the sum of the weighted input signals are represented in AN code.
Local Detection introduces a distributed checking of the computational results by
verifying the correctness of the summation input to the non-linear function f. The
decoder/checker generates the uncoded representation of the input summation and
an error signal e : the input summation is then delivered to the non-linear function
to generate the neuron’s output. The result of the neuron’s computation is not coded
and is directly delivered to the receiving neurons.
This architecture is capable of detecting all errors iv the synaptic multipliers and in
the adders performing the input summations, provided a suitable structure of the full
adders has been adopted as discussed in IS]. Errors in the weight memory may be
detected according to the specific value of A. If A is odd, all single errors generate
non-codewords at the input of the multiplier; if the input X is divisible by the code
generator A , the error remains latent until a value X which is not divisible by A is
presented at the neuron input. If we assume a random distribution of the value of the
neuron’s input, all memory errors may be detected, possibly after a delay.
AI = A, Az = 1; here, we make use of Local Detection with Coded Inputs (LDCI),
while weights are the nominal ones. The synaptic products and the sum of weighted
inputs are coded in the same AN code as the neuron’s inputs. Decoding, checking
and error signal generation are identical to the LDCW case. The neuron’s output
must then be encoded to propagate the coded data stream to the receiving neurons;
computation of the non linear function and result encoding can be compacted in a
single operation, by properly modifying the non-linear function evaluator.
As the previous one, this architecture also is capable of detecting all errors in the
synaptic multipliers and in the adders. Moreover, single stuck-at faults on transmis-
sion lines of interconnection paths between pairs of neurons can be detected, provided
I wj, In# 0; in this case, the fault generates a non-codeword. The main (and cer-
tainly not minor) drawback of this solution is the total lack of protection for weight
memories.
A, = Az = A: Local Detection with Coded Weights and Inputs (LDCWZ). Both
synaptic weights and inputs are coded in the same AN code. The results of the
synaptic products and the sum of the weighted input signals are thus represented in
A2N code. Local detection provides distributed checking of the computational results,
as in the previous architecture. The neuron’s output must be encoded to propagate
the coded data stream to the subsequent neurons, as in LDCI architecture.
This architecture combines the detection capacities of both previous architectures.
Error latency may occur for faults affecting the interconnection path; moreover, such
faults can be detected only if I UJ,~ I n # 0. The evaluation function is the only totally
un-protected unit.

1.

2.

3.

Concurrent Error Detection 131

3.2 Use of AN codes: protection of the non-liiear function

In all previous solutions, the result produced by the summation component is propagated
(whether correct or error-affected) to the input of the evaluation function in uncoded form.
We must then take into account two different issues: propagation of erroneous information
through a fault-free evaluation unit (an important issue for those instances in which error
masking may have been present) and insurgence of an error due to a fault in the evaluation
function.

Obviously, such an analysis must take into account the form of the non-linear function
and the implementation techniques adopted for it. We consider here the simplest (and,
in practice, widely adopted solutions) by which the function is approximated either by a
single step function or by a composition of steps. A basic assumption common to all cases
is that signals be represented as fixed-point numbers, expressed with a finite and fixed
number of bits.

Assume first a single step; the implementation involves a trivial comparator. What-
ever the input to a fault-free comparator, by definition its value falls within the acceptable
bounds for the comparator’s inputs; therefore, the output will always be an acceptable value
(i.e., one of the two alternative signal values), although it might be the wrong one as a
consequence of an error in the input value. Even by providing coding on the output of
the comparator (as in solutions LDCZ and LDCWZ) no protection is given against p rop
agating error-affected information. Errors cannot be confined, meaning that subsequent
neurons will operate on formally acceptable input signals. It is quite obvious that lo-
cal detection and local error-confinement policies are the only possible solution to this
drawback.

If, on the other hand, D is correct but the comparator is faulty, solutions of types
LDCZ and LDCWZ must of necessity be considered to detect a fault in the comparator’s
output. The comparator must be designed so as to grant that any single fault affecting
i t will produce as output a non-codeword; the error may then be detected by neurons
receiving such signal, following the conditions stated in section 3.1.

Consider now a multiple-step approximation. If the evaluator is correct, error prop-
agation on error-stricken inputs happens just as in the previous case.

For faults affecting the evaluator circuit, we might envision different implementation
approaches. A cascade of comparators could be considered - in which case, design re-
quirements introduced above would still hold - or otherwise a PLA could be chosen as
a compact and fast implementation. In this last case, any single fault (stuck-at on an
output line or crosspoint) in the OR plane will either be masked (in the case of stuck-ats)
or result in a non-codeword.

3.3 Local detection solutions: fault location network

In all solutions described in 3.1, an error signal is generated locally by the decoder detecting
the error. Two approaches may be undertaken, namely, system-level error detection or
neuron-level error location.

In the first case, error signals generated by all neurons in the network are OR-ed
together and the result simply provides a go-no go information for the complete system.
Wiring is actually complex - involving propagation of error signals from layer to layer and
through all neurons of each layer. A modification, still leading to error detection only,
distributes the error signal OR-ing through the whole array: this leads to lower fanin of
the OR gates and to a simplified, regular wiring scheme.

132 1992 International Workshop on Defect and Fault Tolerance in V U 1 Systems

Fig. 1 - Local detection
architectures for A N codes

Fig. 2 - Fault location
network (uncoded inputs)

Fig. 3 - Fault location
network (coded inputs)

Aw,+B

U
Fig. 5 - LDA WCI architecture Fig. 6 - LDAWAI architecture

- 1

Concurrent Error Detection 133

Error location can be provided by adopting a triangularization technique, here de-
scribed in the assumption that the multi-layer network is mapped onto a rectangular
array of neurons (see fig. 2). The error signal related t o each neuron is now propagated
along two directions, namely both along the horizontal axis (inter-layer) and along the
vertical one (intra-layer). In the single-error assumption, such a technique allows t o lo-
cate the faulty neuron a t the crossing between the leftmost vertical error line and the
uppermost horizontal error line on which an error information is present. The architecture
presented in fig. 2 can be adopted only for networks in which the inputs are not coded.
Otherwise, an error in the output of one neuron leads all neurons receiving such output to
activate their own error signals: the layer containing the faulty neuron corresponds to the
leftmost activated error line, while the neuron inside such layer cannot be identified since
all horizontal error lines are active.

The architecture for fault location when inputs are coded is presented in fig. 3.
Whenever the intra-layer error signal of one layer is active (i.e., an error occurred in that
layer), i t hinibites propagation of the error signals generated locally in neurons belonging
to the subsequent layers and forces propagation of the error signals generated in the layer
containing the faulty neuron. In large neural networks, the skew due t o intra-layer error
propagation may be relevant for overall system performances; it can be avoided by properly
latching the intra-layer error signals, even if a limited error latency may be introduced.

3.4 Use of AN + B codes: local detection solutions

As for AN codes, we examine first solutions protecting the synaptic errors and the sum-
mation errors, and then briefly extend them to include errors in the evaluation function.

We extend the solutions presented in section 3.1 so as to exploit the characteristics of
AN + B codes. Generation and propagation of the global error signal is performed as in
the case of AN codes.

4. AI = A2 = A, B1 = B and B2 = 0: Local Detection with Coded Weights and
Associated-Coded Input (LDCWAI) . Synaptic weights are coded in AN code (see
figure 4), while inputs are represented in the associated AN + B code. The results of
the synaptic products have the following composite expression:
(Awi j) (Az j + B) = Azw;jz j + ABwij. The coded input summation S; to neuron i is

To verify the correctness of multiplications and additions, the input summation must
be transformed into a traditional codeword. To such purpose, the term AB . Cj w;,
must be subtracted from Si. Since during the recall phase the synaptic weights are
fixed, such correcting term has a fixed value for each neuron. In the absence of errors,
the corrected summation is s, = A2 .Ej W , ~ Z ~ , i.e., it belongs to the A2N code. Error
checking can be performed on the corrected summation as in the LDCW I architecture
by dividing by A’. If an error occurs in the multiplications, in the addition or in the
correcting subtraction, a non-codeword is presented a t the decoder/checker whenever
the same conditions as in 3.1 are assumed for the arithmetic units and the code
generator A. The neuron’s output must then be encoded to propagate the coded data
stream t o the receiving neurons.
This architecture detects errors as the LDCWI one, but no error latency may occur
for errors in the weight memory since no input belongs to the AN code. Denote by
S; the coded input summation in the presence of an error in the weight memory. In
our assumptions, the error e is an additive power of two; therefore, if e = 2k, i t is:

thus: S; = C j (A w i j) . (Az , + B) = A’ . C j w;;z~ + A B . C j ~ , j .

I34 1992 International Workshop on Defect and Fault Tolerance in VLSI Systems

sl Z j (A w i ; + 2 k) * (Az j + B) = A' . cj ~ ; j z j + A B . E, wij + 2k . (A%) + 2kB
where Z is the input corresponding t o the synapsis affected by the error. The corrected
summation s: in presence of such error is: s: = A' .Ej w,;z, + 2'. (A z) + 2*B. Even
if Z is divisible by A, the corrected summation does not belong to the code A* N since
2k B is not divisible by A'.
This architecture detects also errors due t o a fault in the correcting subtractor.

5 . AI = A2 = A, B1 = 0 and Ez = B: Local Detection with Associated-Coded Weights
and Coded Input (L D A W C I) , (see figure 5) . The results of the synaptic products
and the input summation have composite representations similar to those obtained for
the LDCWAI architecture. The correcting term which transforms the coded input
summation S; into the corrected summation si is A B . C , z j . Unfortunately, this is not
a constant related t o the values of the synaptic weights as in the LDCWAI solution,
but is depends on all input signals of the considered layer. Since the expression is
identical for all neurons in the layer, it can be computed once for each layer and,
then, distributed to all neurons in the layer. Error checking can be performed on
the corrected summation as previously. If an error occurs in the multiplications,
in the addition, in the correction generator or in the correcting subtractor, a non-
codeword is presented a t the decoder/checker. To guarantee detection of errors in
the interconnection paths, an additional data check must be performed a t the output
of the adder generating the input summation; this check consists in verifying that s;
belongs t o the AN code.
This architecture detects errors as the LDCW I solution as well as errors due to faults
in the interconnection paths; the circuits for the correcting terms are also protected.
Error latency may occur for weight memories.

6 . A , = A2 = A and B1 = Bz = B: Local Detection with Associated-Coded Weights
and Associated-Coded Inputs (L D A W A I) , (see figure 6) . The correcting term that
must be subtracted from the coded input summation Si is A B . C j z ; + A B . C , w;;. To
perform such correction, first we subtract kB' from the input summation S, (where k
is the number ofinput synapses incoming into neuron i), then we add A B . C j z j + A B .
Ei wii. The second correcting term is obtained by adding the constant A Cj w,) - kB
t o the sum of the coded inputs.
This architecture detects all single errors without any latency.

3.5 Global detection solutions

Apart from the detection performances and the cost of coding/decoding circuits, wiring has
been seen to be a major cost factor in the local detection solutions previously described.
Considering detection - not location - to be the only aim of the concurrent detection
technique, we may envision other architectures, still based on the same coding approaches,
in which the error information is propagated through the nominal architecture itself, rather
than through a separate error propagation network.

We will introduce the guidelines of such modifications with reference to one archi-
tecture only, namely the LDCI architecture. Similar modifications can be derived in a
straightforward manner from the other architectures based on coded inputs. Two solutions
may be envisioned. In the first case, the components appearing in fig. 1 are left unmod-
ified, and suitable ones are added; in the second case, the function evaluator is radically
modified.

Concurrent Error Detection 135

Ax,

Fig. 7 - Local propagation Fig. 8 - Global propagation

7. LPCZ architecture: Local Propagation with Coded Inputs (fig. 7). The only dif-
ference with respect to LDCZ is that the error generated locally is added to the
encoded neuron’s output. If no error occurs in the computation before the decoder,
the output generated by the non-linear function is the codeword representing the
nominal neuron’s output; otherwise, the output propagated to the receiving neurons
is a non-codeword.
As for the encoder, the final adder could also be compacted into the non-linear func-
tion.
From the point of view of error detection, LPCZ architecture has basically the same
characteristics as LDCZ. Still, it should be noted that if the neuron’s output is
affected by an error but all the synaptic weights associated with its connections to
receiving neurons are divisible by A, no error will be propagated and contaminated
information will spread through network.

No decod-
ing/checking is performed locally; the error is globally propagated toward the final
outputs by using the nominal operations on coded data. At the final outputs of the
neural network, the results are decoded and checked as in local detection. To guaran-
tee a complete propagation of errors due both to faults in the non-linear function and
to faults in the other arithmetic units, the coded representation Aa of the weighted
summation is delivered to a modified version g of the non-linear function f ; we adopt
g(Aa) = Af(a) - Ao. Then, the output of g is added to the coded input summation
Aa. Use of the modified function g and of the output adder can be avoided only for
such implementations of the function f which guarantee that the output is a codeword
if and only if the input o f f is a codeword (i.e., no error occurred in circuits above f)
and no error occurred in the computation of the function f itself.
Detection performances and problems are the same as for the LPCI solution.

8. GPCZ architecture: Global Propagation with Coded Inputs (fig 8).

4. Comparative evaluation of costs and performances

In section 3, we evaluated the error detection performances of the different solutions; it
is necessary to consider also the area overhead involved and the increase in computation
time.

Consider first the relative area increase of the various components in each neuron for
the different coding schemes:

- LDCW: Weight memories, multipliers and adder all require an increase proportional

- L D C I Multipliers, adder and wiring all require an increase proportional to [log, A];

- LDCWZ: Multipliers and adder require an increase proportional to [log, A]’; weight

to [log, A]; the cost of the decoder must be added.

the cost of the decoder and of the encoder must be added.

136 1992 International Workshop on Defect and Fault Tolerance in V U 1 Systems

memories and wiring require an increase proportional to [log ,A] . The cost of the
decoder and of the encoder must be added.

- L D C W A I , L D A W C I , L D A W A I Due to the fact that B is most often equal to 1, the
cost of memories, wiring, multipliers and adder is not increased in a very relevant way
with respect t o the A N code solutions. A very relevant cost increase, on the contrary,
will derive from wiring and circuits related to the various corrections involved in the
decoding operations.

Last, let us refer t o time overhead. From this point of view, the fastest architecture is
L D C W ; the only added operation is decoding on each neuron's adder output. Actually, a
time increase in multiplication and addition should also be taken into account; again, for
this solution, this increase is no higher than that for any other solutions.

L D C I adds, to the time overhead required by L D C W , the delay due to encoding of
the neuron's output; this might be minimized or even nullified by a proper design of the
function evaluator. L D C W I will require a higher multiplication and addition time than
L D C I ; other overheads are identical.

As for the area evaluation, also the time overhead introduced by the A N + B coding
solutions is quite more relevant than for the A N ones due to the decoding complexity.

The application's requirements and the particular structure of the network's imple-
mentation will guide in choosing the "best" solution on the basis of performances and costs
as evaluated above.

5. References

[l] D.B.I. Feltham, W . Maly: "Behavioral modeling of physical defects in VLSI neural
networks", in Proc. 1990 Int'l Workshop on Defect and Fault Tolerance in VLSI
Systems, Grenoble, France, Nov. 1990

(21 D.B.I. Feltham, W . Maly: "Limitation t o the size of single-chip electronic neural
networks" in Proc. IEEE International Conference on WSI , San Francisco, USA,
Jan. 1991

[3] V. Piuri, M. Sami, R. Stefanelli, "Fault tolerance in neural networks: theoretical
analisys and simulation results", Proc. Compeuro 1991, Bologna, Italy, May 1991

[4] V. Piuri, M. Sami, R. Stefanelli: "Neural networks on silicon: the mapping of hardware
faults onto behavioral errors", Proc. Int'l Workshop on Defect and Fault Tolerance
1991, Hidden Valley, USA, Nov. 1991

[SI C. Neti, M.H. Schneider, E.D. Young: "Maximally fault tolerant neural networks",
IEEE Trans. on neural Networks, Jan. 1992

[SI V.Piuri, M.G.Sami, D.Sciuto, R.Stefanelli: "A behavioral approach to testability of
neural networks", Proc. IJCNN92, Baltimore, USA, June 1992

(71 T.R.N. Rao: Error coding for arithmetic processors, Academic Press, NY, 1974
(81 R. Stefanelli, M. Annaratone: "A multiplier with multiple error correction capability",

Proc. ARITH-6, 1983

