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Abstract
The paper presents and evaluates the design and the implementatiosetffchecking
neural system forphoton event identification in Intensified Charge-CouplBévices
detectors. The neuralapproach reveals more effective than classicalgorithmic
approaches thanks toits learning through example ability. Implementation is
accomplished by SRAM-based FPGAs, which have generated incraéatEngst in the
space community. The adoption of suitable on-line fault detection techniques is illustrated
taking into account in specific way SEU induced faults. The techniques are based on AN
coding, particularly 3N coding, which constitutes a reasonable trade-off between circuit
complexity and computational delay. Estimations cocuit area overhead andfault
coverage are reported.

1. Introduction

The paper dealsvith the design and implementation of an innovative system for
identification of photonevents in Intensified Charged Coupl&kvices (ICCD)detectors
for space applications [1] by means of a neural architecture. The huge amount of CCD
images to be analyzed and the smmalimber of significant photoevents suggest the use
of onboard processing and dedicated high-performarchitectures to limit thestorage
needs and support the continuous real-time control of the experiment.

The complexity of the photoevent identificationtask, in whichmany factorsconcur
and interfere to define both the characteristics of the object that must be detected and the
experimental environment, discourages the use of algorithmic approatheésed,
algorithmic approaches are difficult to be specified at reasonafgmputational
complexity because of uncertainty and noise, while many exampl€Cbfimages can be
easily collected. Artificial neural networks represent an interesting approach, dheirto
intrinsic computational parallelism and configurability through learning by examples. In
the literature many papers are available on image classification and feature extraction by
artificial neural networks, butone specifically dealwith the image characteristics of our
application [2-5].

A novel neuraphoton event identification system has been designed in order to satisfy
the stringent requirements dictated by our application. The system hasdbeeloped
using Field Programmable Gate Arrays (FPGAs), which have generated interest in the space
community due to their ability to implement custom hardware solutiwhge still
maintaining flexibility of digital signal processors through device programming. They also



offer the advantage of reduced developmeosts withrespect to Application Specific
Integrated Circuits(ASICs), especially in case of lowroduction volume. Moreover,
SRAM-based FPGAs allow unlimited in-systeeprogrammability, thus increasing system
flexibility.

Some fault-detection capabilities are needed in our phet@nt identificationsystem,
like in any digital system in critical applications and hostile environments, in order to
guarantee the system operation amadidate the outputs. Neural networks are claimed to
have intrinsic fault-tolerance capabilities. Unfortunately, only a limited amount of intrinsic
correction capacity is actually available [6] for some very speclfisses of faultssome
neural paradigms, and only if a suitable learnimgpcedure is adoptedHowever, this
capacity does not provide any information both on the correctness of each output and on
the location of the faulty component. Intrinsic error masking may fail for some ggbsit
or from a given time on, but no signal is generated to prevent subsequent arsenafous
data [7].

Besidesalthough rad-hard-PGAs are available to jplement systems intended for the
space radiation environment, sensitivity to Single Event Upset ($ttlured faults istill
an issue that needs to be dealt with. Concurrent error detection is mandatory to check every
result in on-line processing systems. Physiocaddular redundancy andlata codes
(namely,AN codes [8, 9]) have been shown effective to achieve this goal at a limited circuit
complexity increase. Experiments on SEehsitivity of neural networks are presented in
[10], and preliminary results about the SEU susceptibility of antifuse-b&s%8lA are
reported in [11]. A preliminary design of a neuravith fault-detection capabilities is
presented in [12], while the neural approach for event identification is discussed in [13].

The paper is organized as follows. Section 2 summarizes the pbhebmidentification
problem and the proposed neural approach and highlights some general properties of
SRAM-based FPGAsfor space astronomy applications. The self-checkingural
architecture is presented in Sectionwjile the analysisand coverage of SElihduced
faults are given in Section 4. Some conclusions are drawn in Section 5.

2. The photon event identification system

The photon event identification system (Figure 1) consists ohigh-gain electron
multiplier based on MicroChannePlates (MCP), aread-out system composed by a
phosphor-screen fiber-optically coupled to a fast-scar®@B® camera, and @rocessing
system for event identification [14]. On ti@&CD matrix, eachphoton event appears as a
charge distribution having approximately a Gaussian profile and covering-piXel area
(called event window). Valighhoton events are identified against bad or spurious ones by
morphological analysis of event profile.

An ad hocneural paradignwasdefined for the event identification [13]. Theeural
network consists of 25 neurons, corresponding to pixels in the event windown&aobn
has 24 connections to theeighboring neurons and one feedback loop. Tyaamic
behavior of the neuron is defined by:
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wheres;(t) is the state of the" neuron at time, 0=0.25 is the stability thresholdy is the
i" input synaptic weightd is the neuron thresholdf is the temperature controlling the
neuron evolution, and
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Experiments showed that the event identification is accomplished in three iterations
only. The neuron operates in 8-bit integer precision, whiabproved to produceesults
practically equivalent to the floating-point representation.

The event identification problem is invariant under translatib@:same set adynaptic
weights can thus be used for all eveindows. Moreover, theotation symmetry of the
charge distribution allows defining only six independent weights.

The architecture for event identification is mainly composed byCQ@B Interface and
the Event Identification Unit. The former prepares the event window, while the latter detects
the significant events. A suitable neural network controller responsible for downloading the
configuration parameters, saving and transmittingsults,and communicating possible
operating errors, manages the operation of the Event Identification Unit.

The CCD interface consists ofour 512*9 FIFOs and five 9-bit registers (Figure 2).
RegisterE loads pixels from the CCD, while the other registers load data fronpréheous
FIFO in the chain. Registdt contains the last pixel in theurrent row; register®, C, B,
andA hold the pixels in the same column but in the previous fours. Registers contain,
therefore, a column of the evemtindow. A Eurocard-standard boartiosts the CCD
interface and the neural network controller.

The neural-based event identification undnsists of five identicaEurocard-standard
boards, hosting five neurons each (Figure 3). Every neuron is implemented [HPGi#e
Each neural board processes one row of the event window. ThENdDsSs shared by all
devices and is used by the controller to send commands to the neurons and download the
network parameters. The b8$N25represents the neuron synapses: each neusea one
bit of this bus to send serially its state to the other neurons, while the other 24 bitpare
synapses. The neuronstates are initializedvith the corresponding pixelaluesthrough
the busSTAat the beginning of each window analysis cycle. Pixels fromC@P interface
are loaded intdPGA-1 Pixels for the initialization of the othdfPGAs aretransferred
through the chain of adjacerfPGAs so as togpropagate theevent window. Each
initialization forces the window to move one pixbrough the neurong?ossiblerun-time
errors are sent to the controlltirough the busERRORand, then, forwarded to laost
computer. The budlZ collects the event flags of all neurons: an event flag is activated if
the corresponding neuron's state is non zero. Event flags are delikevedh theNZ bus
to the neural network controller thassessethe presence of a photevent byanalyzing
the event flag activation pattern.

In the current prototype, the neural network training is performed off-line afifid
board; at the end of training, the network parameters are downloaded fromoshe
computer. The space system will have autonomous learning capability to gudtatiee
adaptability.

For the actual application the Xilinx XC4013E [18vices have been used. The
specific technology adoptedatisfies therequirements of the present application in the
atmospheric environment arallows the implemented system to be retargeted for space



applications without additional desigriosts, byusing thecorresponding hardenedevices
XQR4013XL [16] so as to cope with radiation effects.

One of the major concerns in the design of space environment systemsadsdititeon
sensitivity of electronic devices. Radiatiomduced effects are mainly due to protons and
electrons trapped in the Van Alldrelts, cosmiaay protons and heavipns, andprotons
and heavy ions from solar flares. They are generally described in terms ofidratahg
Dose (TID), which is related to the long-term absorption of radiation, and require the use
of suitable radiation hardened electronidsvices. However, the passage of a single
ionizing particle through aevice may cause some effects, termed Single Ek#fistts
(SEEs), that hasvegun to be noticed and investigated only recen8%Es may be
distinguished in latch-up effects or Single Event Latchup, (SEL), and the so- Saligleé
Event Upsets (SEU). Théormer may have a destructive naturehile the latter are
generally transient pulses in combinatorial logic or bitflips in memory cells or latches.

Two main classes of FPGAs havgained interest for space applications, each one
offering trade-offs in functionality, performance and reliability. Antifuse-basSB®GAs are
configured by fusing appropriatswitches. SRAM-based FPGAs, instead, aomfigured
by programming appropriate memoswitch elementsusually composed of amemory
cell and a pass-transistor.

SRAM-based have been said more susceptible to SEU than antifuse-BR&sk,
because of the high number of programmable memory locations, resultingincraased
SEU cross-section bypproximately one order of magnitudélowever, it should be
noticed that latches and flip-flops in antifuse devices are equelhgitive toradiation-
induced upset as the latches of SRAM-based FPGAs.

Xilinx recently published results about the probability rafliation-inducedupsets as
well as the likelihood of latch-up in commercial XC4000-series devices iatthespheric
radiation environment [17]. At increasingly enerlgyels,from 10 to 100MeV, no latch-
up was found and a few SEUs were detected at the highest radetéds. The SELLross-
sectionwascalculated as about 1.3 to 4.4 x*1@nt/bit, which is anorder of magnitude
below the lowest limit reported for commerci@RAMSs. Also results wereeported for the
new rad-hard XQR4000-seriedevices in Low Earth Orbit missions [18], whigiroved
hardness beyond 60,000 rad ©D, SEU resistance, and latch-ummunity at 100MeV,
that is a Linear Energy Transfer > 108eV*cm?mg, limit beyond which a device is
considered SEL immune.

In the current prototype FPGA configuration programs are storedBR®OMSs; in the
space flight system static RAMs will be used to allow for modifications during the mission.

3. The self-checking neuron

Suited techniquesvere adopted to implement neuron operatiom$h concurrenterror
detection. The traditional single fault model [19] is appropriate for our application and
also holds when radiation effects are considered. Parity cod@Mrbdes (withA=3) [9,

19] are particularly suited for the memory storage and the arithmetic units of the self-
checking neuron respectivelfpata coding is considered good compromise between
circuit complexity and computational delay. For t8€D interface the parity coding is
effective. Encoding should be performed in the CCD camera to guarantee protection of the
interconnection path. In the present systestease,coding is performed at the CCD
interface input since weavere not allowed to modify the CCD canera circuits.
Communication between th€CD interface and neurons, agll as among neurons, is
protected by physical duplicatiowith output comparison. AMR is used to protect the
neural network controller.



The self-checking neuron in thevént Identification Unit consists of three maparts
(Figure 4): the Weighted Sum Secti@VSS),the Sigmoidal Function Sectio(6FS), and
the Initialization Interface.

The Initialization Interface acquires pixel values adsthe initial neuron’s stateinto
the OUT_Regregister. The initialization phase is executed at the beginning of exaxtt
window analysis cycle. The WSS produces the neuron's activation sigreainipyuting the
weighted sum of inputs. Neurons communicate serially to limit the board wiring. Inputs are
grouped into 6classesg(one for each independenteight) and summed up withieach
class. Each of these sums is then multiplied by dbeespondingweight. Theresulting
products are finally added to generate the activation signal. Arithmetic operations are
pipelined to achieve higlthroughput. TheSFSgenerates the neuron's output from the
activation signal. If this signal is out of a pre-defined range,ndwron’s output iforced
to the corresponding saturatiomalue. Otherwisethe neuron’s output is computed by
dividing the activation signal by the temperature parameter. Divisigmeiformed by
iterated subtractions. Due to the pipelined architecture, output generation is overlapped to
the computation of the subsequent weighted sums.

Implementation of the specific coding techniques for the neuron is now desdtiaeh.
FPGA receives the initialization data by the Initialization Interface (Figure 4).pBhnity
code is checked at this point and tBN-coded value is determined to be stored in the
output OUT_Regregister. The3N-coded weights are stored in tlserial_in_Param_Reg
registers. The arithmetic operations generating the weighted sumsautoenatically
protected by the use of ti3 code for both inputs and weights. Weighted inputs, weighted
sums, threshold and temperature values, and non-linear activation functiorp@sented
in the 9N code. It is worth noting that coding both inputs amdights leads to a@ircuit
complexity higher than the one required by single-fault detectldowever, this is
acceptable to protect also the logical data paths. No intermediate checkiegoaling is
required to preserve the single-error assumption since no aliasing is induced either by
possible reconvergent data paths or cycles. Possible pipeline registers’ fagkbssicered
as errors in the subsequent arithmetic units in this approach.

The output function is protected by tB&l code aswell. Since division isperformed by
iterated subtractions, checking is needed after every iteration to avoid aliasingai@am
to the saturation values and also M flag are protected by circuit duplication witlutput
comparison. Checking is performeslithin eachneuron concurrentlywith the noninal
computation by verifying thelivisibility by the codegenerator § or 9 for the 3N or 9N
codes, respectively) [9, 19Belf-checking checkers are adopted to avoid emaisking
due to errors in the checkers themselves. The two-rail logic [19, 20] is used to protect the
error signal propagation to the control board.

The circuit complexity of the self-checking neurdras been evaluateith terms of
FPGA resources, i.e. theumber of Configurable LogiBlocks (CLBs) and/O pins. The
neuron without fault-detection features occupies 3ZIBs and 110 I/O pins of the
XC4013E device, while the self-checking neuron needs 415 CLBs (72% of th&€t@a)
and 1181/0 pins (61% of the total pins). The circuit complexity overhead due to
concurrent error detection is thus about 26.9%hile the interconnectioncomplexity
increase is 7.2%.

4. SEU fault analysis and coverage

SEUs and SELs for commercial amdd-hard Xilinx 4000-serieslevices havebeen
measured in laboratory arebstimates about SEU and SEL rates have been calculated for
applications in the atmospheric and space radiation environments [18]. Bgical



application in the atmospheric environment using commendsaicesthe SEU rate is on
the average one bit error per 250,000 to 1 million hours, depending afetfeefamily
adopted. For a typical space application using rad-hdedices,the SEU rate is
approximately one bit upset every 100 hours.

SEUs can be distinguishetepending onwhether they occur in the usaremory cells
or configuration cells (possible SEU-induced transient effects on data lines are not
considered in this work). In the first case, Look-Up-Tables and Flip-Flops mayfdeed
resulting in corrupted data. Th&N coding technique ensures a full coverage sath
faults. In the secondcase, the internal multiplexers’ selectiomits of CLBs and
programmable interconnectionswitchesmay be subjected to SEU. Madifications in
CLB’s internal data paths result in wrong data and, therefore, are fully covered by the
technique adopted.

As far as interconnections are concerned, an SEU may induce a bitflip in one of the six
configuration cells of a programmable interconnection point. This affects theleSeed
connection scheme of the specific design implemented. The following three situations are
possible: i) a line break, which causes a wrong value in some unit afetm®n and, as
such, is covered by th&N coding; ii) a connection of an unused lingh an internal data
line, which has no effect, i.e. the fault is intrinsically masked; iii) a short circuit between two
data lines, which represents a possiliglging fault. Inthis last casefor wired-AND and
wired-OR bridging, a wrong data flows through the neuron and, thus, can be detected. Any
other kind of bridging producing an illegal logic level is difficult to be treat&tl on-line
techniques and is not covered by the present approach. Off-line techniques, for instance
looe techniques [21], are more appropriate to detect such kind of faults.

5. Conclusions

A configurable computingsystem for photon event identification was presented,
consisting of a self-checking implementation of a neural network by XiKG4000E
devices. The system was conceived for onboard applications of astranstnymentation.

The susceptibility to radiation induced faultss considered for the choserechnology.

The on-line fault detection technique adopted, based on 3N coding, was proved effective to
cover almost all types of SEU faults, with a circuit complexity increase of 2€PBs and

7.2% 1/0 pins. Specifically, all usermemory cell faults are covered.Regarding
configuration cells, only some types of possible bridgirfgults, due tointerconnection
shorts, cannot be detected by the chosen approach.
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Figure 1. The ICCD detector scheme. The CCD camera is a 512x512 15 m-pixel
matrix and operates at 60 frame/sec in full-frame mode. Frames are read
sequentially (one pixel at a time) from the CCD camera digital output at 20
MHz.
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