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Abstract 

The problem of testability and test pattern generation at 
the highest abstraction level, i.e., based on the 
network's behavior, is here considered for Hopfield 
networks. Complete testability is proved. A test pattern 
generation approach based on creation of an equivalent 
Finite State Machine is presented, functional test 
pattern generation having being proved to allow vely 
high coverage of logic-level faults in the case of FSMs. 
An eflcient algorithm, using BDDs, is finally described. 

1. Introduction 

Recent literature has made evident a trend towards 
qualitative evaluation of system testability at the 
highest, i.e. behavioral, abstraction model. Such an 
approach can provide guidelines for choice of 
subsequent implementation alternatives; recent 
published examples are provided, e.g. by [ 1, 21 and, in 
the neural network domain, by [3]. Even more relevant 
efforts have been dedicated to the problem of 
functional-level test pattern generation (usually, the 
term "behavioral" is in this case adopted only for 
microprocessors). The justification of such trend can be 
found both in the extreme complexity of VLSI devices, 
making conventional techniques unmanageable, and in 
the possibility of creating test patterns as far as possible 
independent of the final silicon implementation. In 
particular, the functional test generation approach has 
been proved very rewarding in the case of Finite-State 
Machines; test patterns derived for a purely functional 
error model and on the basis of the state table only have 
experimentally given very high fault coverage for 
different types of implementation technologies (e.g., 
random logic, PLA) and for related fault models [4, 5 ,  

In the present paper, the functional approach is 
adopted both to evaluate testability and to provide 
efficient test pattern generation for Hopfield networks. 

61. 

We start from the standard Hopfield paradigm 
definition [7]: 

where xi(t) is the output of the i-th neuron at time t ,  xf t -  
I )  the output of the j-th neuron at the previous iteration, 
wg is the interconnection weight between neurons i and 
j ,  8i is the bias of neuron i ,  and f i  is the non-linear 
activation function (usually taken as the signum or step 
function). 

We assume that learning has been perfected, so the 
values of the weights wg are determined and the 
network is able to reach a steady output for any input 
pattern. Without loss of generality, we consider that the 
possible values of xi are only { 0, I }. We restrict our 
present analysis to the parallel-type recalling procedure 
of the Hopfield networks: the initial input xi(td is set in 
each neuron simultaneously; the network evolves 
towards the final steady state so that, at each iteration, 
the output updating is performed within each neuron 
simultaneously. 
In our analysis, we distinguish between errors in the 
network's outputs due to faults and errors which are 
intrinsic in the neural paradigm due to incomplete 
classification and generalization capabilities provided 
by the actual learning procedure. In the presence of the 
second class of output errors, even if they are related to 
an undesired neural behavior, testability and testing can 
be considered as in the desired behavior since the 
undesired behavior is part of the whole nominal 
behavior generated by the adopted learning procedure. 
Therefore, we concentrate our attention on the 
identification of erroneous outputs due to faults. 
No assumption is made on the implementation 
technology as well as on the supporting architecture, 
excepting for the request of explicit synchronization 
with respect to a time base. 

The first problem in testing is the preliminary 
evaluation of the testability of the whole system at 
behavioral level [ 1, 21, i.e., the possibility of providing 
and propagating the necessary test patterns for error 

J 

0-7803-1901-X/94 $4.00 01994 IEEE 457 1 



excitation (controllability) and the possibility of 
observing the results generated by the circuit under test 
(observability). In [3], we adopted a behavioral 
approach at the abstraction level of the neural operators 
for the case of multi-layered feed-forward networks. In 
Section 2, we discuss this figure of merit of the neural 
paradigm for Hopfield networks, i.e., in the presence of 
feedback loops. 

A subsequent, even more important problem, is that 
of test pattern generation. Hopfield networks of large 
dimensions have already been implemented [SI; 
moreover, such different implementation approaches as 
analog, digital and mixed solutions have been presented 
in the literature. A low level test generation approach 
would involve separate test pattern generation for each 
implementation alternative; moreover, such procedure 
would be very complex both for a digital 
implementation (the Hopfield network is a sequential 
one) and, even more, for an analog implementation. 

In Section 3, we introduce an FSM modeling 
approach for Hopfield networks. It will be seen that 
such model allows a very efficient test pattern 
generation with reference to the "single-transition" fault 
model adopted for FSM functional testing [9]. In fact, 
complete coverage can be reached by a procedure 
whose complexity is linear with the number of states. 
Thus, we achieve test patterns valid for any 
implementation satisfying to the above recalled 
restrictions (parallel recall, explicitly synchronous 
operation). Section 4 presents a detailed description of 
the behavioral test procedure generation. 

2. Testability analysis 

The testability issue for any system can be 
summarized as the possibility of total controllability and 
observability, where by controllability we denote the 
possibility of propagating arbitrary test patterns from 
the system's inputs to the component whose possible 
error must be tested, while by observability we denote 
the possibility of propagating the results produced by 
the component under test up to the system's outputs. 

In the case of the Hopfield network, behavioral 
testability can be seen as the possibility of forcing the 
network into an arbitrary state and of verifying the 
correct transition to its next state. By nature, an arbitrary 
state can be applied as an input configuration, i.e., the 
machine is completely controllable. 

In the same way, the outcome of the transition, i.e., 
the next state, can be directly read on the network 
outputs, so that the machine is completely observable. 

As a consequence, any Hopfild network afforris 
complete behavioral testability. Actual testability will 
then depend on the architectural and technological 
solutions; behavioral testability constitutes an upper 
bound for lower-level (e.g., gate-level) testability (it is 
respected in particular if one-to-one mapping of 
operators onto components is adopted). 

3. FSM modeling of the Hopfield network 

The classical definition of a finite state machine M 
is a quintuple <S,  I, 0, 6, h>, where S is the non-void 
and finite set of states, I is the finite input alphabet, 6 is 
the next state function defined as 6: SxI + S and h is 
the output function, defined as h: S + 0 (we adopt here 
the Moore model). Operation of an FSM at the 
functional level is best described by a state diagram or 
(which is equivalent) a state table. 

Gate-level testing of FSMs involves relevant 
difficulties in test pattern generation [l  11; on the other 
hand, recent papers have proved that test approaches 
based on a functional error model - namely, the so- 
called single-transition fault model - and developing 
test patterns on the basis of the information provided by 
the state diagram only actually grant very good fault 
coverage even for lower-level (i.e., logic level) faults. 
We will now prove, first of all, that the Hopfield 
network is well representable by an equivalent FSM, 
and then we develop an FSM-based functional test 
generation approach valid for Hopfield networks. 

Description of the Hopfield paradigm by using a 
FSM can be performed by introducing the following 
mapping between neural and FSM entities. 
Each state of the Hopfield network, i.e., each output 
pattern x, is associated with one state s of the FSM; the 
output xi of the i-th neuron coincides with the i-th bit of 
the state coding s. 
The output alphabet 0 coincides with the set of states S. 
The input alphabet I can actually be taken to be the void 
set; in fact, operation of the Hopfield net proceeds by 
forcing an initial state (coinciding with the input 
pattern) and then having the network evolve in an 
autonomous way (without presenting any further input 
patterns), controlled by the synchronization signal only, 
until a steady state is reached. This justifies our 
assumption of a void input alphabet to the associated 
FSM model. 
As for the next state function 6, defined now as 6: S + 
S, given any state si, the next state sj is computed by 
application of equation (1). Two instances may occur; 
either s j f s i ,  and equation (1) is applied again at the 
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next step, or s.=s; i.e., a steady state has been reached 
and computation stops until a new pattern is presented. 
Considering the operation of a Hopfield network whose 
weight matrix W has been perfected and for which 
parallel recall approach is adopted, given any input 
pattern Zi* the network operates in a deterministic way, 
so that the associated FSM will evolve through a 
sequence of states sjeIi:, si], s t ,  ... sf, sp being the 
steady state associated Ii . 
The output function h is the identity function since the 
Hopfield output coincides with the state; therefore, the 
output alphabet is identical to the set of state coding. 

When learning has been perfected, an n-input 
Hopfield network presents a number of attracting states 
(attractors), i.e. the steady states reached by the 
network when an input pattern is applied (usually, this 
involves transition through a number of non-steady 
states). If learning has been perfected by using center- 
of-class patterns all orthogonal to each other, only the 
desired attractors will be present [7]; otherwise, 
spurious attractors will in general appear in the system's 
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behavior. 

W =  

2 2 0 - 2  

2 2 0 - 2  

0 0 2 0  
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Figure 1 - The state graph for an Hopfield network: the 
weight matrix of the HopJeld network (a), the state 
graph (b). 

Considering as an example a four-neuron Hopfield 
network characterized by the weight matrix W in fig. 1 a, 
application of the input pattern 001 0 leads to creation of 
the state sequence 001 0, I1 11, 11 10 (steady state), that 
can be represented as an oriented path in a state graph. 
Correct operation of the network grants that each state 
will be traversed only once. Thus, the state graph 
segment obtained is a simple directed path from the 
initial state si to the related attractor sf. 

Whenever we apply to the network an input pattern 
corresponding to any intermediate state sf of a 
previously identified path, the state sequence created 
starting from sf coincides with the subsequence sf, 
slk+l , ..., sf of the complete path (this happens, e.g., if 
the input pattern is 11 11). 

If another input pattern I .  is applied leading to the 
same attractor sf, the directed path associated with such 
an input will either converge with the previous one in 
the fmal state, or else share with it a final segment 
(obviously including the final state). For example, for 
the steady state 11 10, the first case is achieved starting 
from the input state 1010, leading to sequence 1010, 
I 1  10, while the second one is generated by the input 
state 1011, leading to state 0010. 

By applying all input patterns leading to the same 
steady state sf, an acyclic directed subgraph is built 
containing all and only the initial states sharing sf as 
attractor. An example is given by the subgraph where 
the states converge to the steady state 11 10 in figure 1. 
This subgraph is similar to an n-ary tree; however, the 
oriented paths are not directed from the root (in our 
case, the attractor I 1  10) to the leaves, but they are in the 
reverse direction. 

Similar subgraphs can be created for each attractor 
in the neural paradigm. Given the determinism of the 
parallel recall approach, these subgraphs are disjoint. 
The complete graph representing the FSM behavior is 
given by the union of all the above subgraphs; 
therefore, it is similar to a forest (see fig. lb). 
This basic characteristic does not change even in the 
presence of spurious attractors. When only expected 
attractors are present in the neural paradigm, the set of 
possible states is partitioned into disjoint subsets each 
associated with an expected attractor. Similarly, the 
state graph is partitioned into disjoint subgraphs: each 
of them is associated with an attractor and contains all 
and only the initial states leading to such an attractor. 
Each possible state belongs to exactly one subgraph. 
When spurious attractors occur in the neural definition, 
the set of states is again partitioned into disjoint sets: in 
figure 1, only 1110 and 1100 are expected attractors 
while 0000,0001 and 001 1 are spurious ones. States not 
associated with expected attractors are partitioned into 
subsets associated with the spurious attractors. As far as 
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definition of the FSM is concerned, there is no 
differences between these two types of subsets. 

Note that, as far as testing is concerning, spurious 
attractors and the related subgraphs will be treated in 
principle just as expected attractors and the related 
states subgraphs. 

All the about assumed that the whole input space of 
the Hopfield network was meaningful, i.e., that all 2n 
binary configurations over x p x n  could be forced as 
initial states. As a consequence the associated FSM 
contains exactly 2n different states. If on the contrary 
the input space is partitioned into a set of allowable 
patterns XA and a set of unacceptable patterns Xu,  
states associated with patterns in XA may appeared in 
the state graph in any position (ether as leaves or as 
nodes internal to a path or as roots) while states 
associated with patterns in X u  may never appear as 
leaves or roots. They will ether be internal to a path or 
not appear at all and the state graph, which may 
therefore consist of less than 2n states. 

4. Test pattern generation for the FSM 
model of the Hopfield network 

By analyzing the state transition graph of the FSM 
modeling the Hopfield network, we can derive a 
strategy for creating the test procedure. Testing of an 
FSM at behavioral level aims at verifying if all allowed 
transitions between states (i.e., all transitions defined in 
the state graph) are correctly performed. If we adopt a 
single state transition fault model, an error can alter 
only one transition either in its output and/or in its next- 
state [4]. 

Due to the characteristics of the Hopfield 
networks, the starting state si of the transition under test 
can always be reached and controlled. In fact, if the 
starting state belongs to XA, it can be directly set as the 
initial state of the network at time to. Otherwise, a 
pattern in XA associated with a state sk and such that a 
path from sk to si exists in the state graph must be 
selected and applied to the network. The path from sk to 
si constitutes the set-up sequence for the transition 
under test. The application of a set-up sequence allows 
testing at the same time all traversed transitions, since 
each transition is directly observable. 

After the network has been set in the starting state 
for the transition under test, testing such a transition 
means simply performing an iteration of the neural 
computation according to equation (1) and observing 
the output result. The transition has been correctly 
performed if the state reached coincides with the 
expected one. 

The set of input patterns that must be applied to the 
network, to test all transitions in the state graph, is the 
test procedure of the network at behavioral level. 
Obviously, it is not unique due to the arbitrary order of 
examination of the transitions. 
To minimize the time required to test a device 
implementing the Hopfield network, we need to 
minimize the number of patterns belonging to the test 
procedure. Each test pattern is composed of a set-up 
sequence (which can be empty) and the transition under 
test. A test pattern completely included into another one 
can be discarded; for example (see figure 1) test pattern 
0111,0010, which tests the transition outgoing from 
state 0111, is completely included in the test pattern 
011 1,0010,1111,1110, which tests the transition 
outgoing from state 11 11. 
The minimum test set is composed of all the input 
patterns corresponding to the leaves: in this case the 
Hopfield network is constrained to reach the steady 
state and thus to traverse and test all admissible 
transitions. 
In our example, the minimum test procedure is given by 
the following 11 patterns: 0001, 001 1, 0100, 0101, 

Generation of the minimum test procedure implies 
complete exploration of the state graph of the FSM 
associated with the Hopfield network. An explicit 
description may require a large amount of memory and 
a long time to verify if a state has been already 
examined; these requirements exponentially grow 
according to the size of the Hopfield network (i.e., with 
the number of neurons). To minimize the storage and 
the computation time we suggest to adopt an implicit 
approach for describing and managing the FSM 

Thus, the deterministic approach, previously 
described, is converted into a random approach that 
performs a pseudo-exhaustive analysis of the admissible 
input patterns (states). A possible test pattern is 
randomly generated and simulated until the steady state 
is reached. All the traversed transitions are thus tested 
and set-up sequences are no longer necessary. For 
example the randomly generated input 0010 (see 
figure 1) enables testing of all transitions between state 
0010 and the steady state 1110. If the randomly 
generated input (in this case 0010) is not a leaf, it will 
be removed from the test set when one of its 
predecessors will be randomly generated (in this case 
101 1 or 01 11). Note that the direct generation of the 
input configurations corresponding to the leaves is not 
feasible due to the impossibility of explicitly describing 
the state transition graph of the FSM. 

The use of Binary Decision Diagrams (BDDs) for 
testing [ 12, 131 is becoming more and more popular, in 
particular because BDDs allow to implicitly enumerate 

0110,0111,1000,1001,1010,1011,1101. 
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FSM's states [14]. The following description, of the 
proposed algorithm, relates to the standard operations 
on Reduced Ordered BDDs (ROBDDs) defined in [lo]. 

BDDs are binary trees composed of nodes 
representing variables; each node has a pair of outgoing 
edges representing its possible binary values ( I  or 0); 
edges can connect a node to another one or to a leaf. A 
path starting from the root of the BDDs and ending into 
a TRUE ( 1 )  leaf can be seen as an algebraic product; all 
the variables, traversed by the path, assume the value of 
the associated incoming edges. For example, figure 2 
(a) shows the BDD for the product 0010; that can be 
derived looking at the unique path starting from the root 
(node 0) and ending into the TRUE leaf (with the 
convention of left edge equal to 1 and right edge to 0). 
A set of binary configurations may be represented by a 
single BDD built by or-ing the BDDs of the single 
configurations. 

Let us define S as the BDD representing all 
possible states (i.e., 2n if all input patterns are 
allowable). At the beginning of the algorithm, S is 
composed of a single node (the TRUE node) that 
represents the inclusion in S of all possible input 
configurations. Such a circumstance dramatically 
highlights the efficiency of BDDs in relation to explicit 
techniques for storing binary information: only one 
node represent 2n objects. If only a subset of the 
possible 2n configurations is allowed, the S set includes 
only the admissible inputs. Let us define E as the BDD 
representing the set of already explored states: at the 
first step of the algorithm E is the FALSE node since no 
node has been explored yet. Note that E is the 
complement of S: definition of two BDD's is useful to 
clearly describe the algorithm, but only one must be 
used in the actual implementation of the algorithm. 

The proposed approach uses the activation function 
f to analyze the network evolution until the steady state 
is reached. At each clock tick, the network changes state 
or remains in the final steady state: our exploration 
algorithm generates a BDD C for the current state by 
using n-1 times the apply-and operation on BDD's, as 
defined in [ IO]  Such an operation performs the 
algebraic and operation between two BDDs. One 
represents the current product and the other the current 
variable. The complexity of the apply operation is 
quadratic with the dimension of the two involved 
BDD's, but in this case one of the two BDDs has size 
equal to I (the variable) and the number of nodes of the 
other one is smaller than n. Thus, the final complexity 
for the construction of C is n(n+1)/2. 
Whenever a new state is reached, its BDD C is 
compared with the set E of already explored states: if C 
is included in E, the exploration terminates and a new 

input pattern is selected; otherwise, the current state C 
is added to E by using the apply-or operation (see [lo]) 
and a new current state is computed via the activation 
function J: 

patterns: 0010 

patterns: 0010 
1111 

8 0 & 0 

(b) 

patterns: 0010 
1111 
1110 

E? && 0 3 0  

Figure 2 - The BDD'S trees for compact pattern 
generation: the tree ajier the first pattern (a), the 
second one (b), and the third one (c). 
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Verifying that C is included in E is performed by the 
intersect operation (see [lo]). If the intersect operation 
is successful, and the current state is also a test pattem, 
such a pattem can be removed from the test set since it 
means the inclusion of the sequence, starting from C, 
into the sequence starting from the current input. 
Complexity of the intersect operation is linear with the 
number of nodes of the smaller BDD involved (in this 
case C). Since the number of nodes in C is always 
equal to n, the above verification is performed in a very 
efficient way. 
Generation of a new input pattem can be easily 
performed by traversing, in a random way, S from the 
root to a leaf. Also complexity of this operation is 
proportional to n (length of every path in S is at most 
equal to n). 

The use of BDDs allows to generate the test 
patterns by analyzing the set of states reached by each 
input pattem. 
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5. Concluding remarks 

The approach here presented allows to design a test 
procedure for a Hopfield network independently of final 
implementation. Previous research has proved the 
functional approach chosen to be effective in the case of 
FSMs; thus, given the common logical fault model, the 
same rate of fault coverage can be deduced for digital 
implementations of Hopfield networks. Simulations will 
be carried out to check whether the same extends to 
fully analog implementations. 

All results presented here relate to the parallel- 
recall approach; at present, research is under way to 
determine an efficient extension to the case of 
sequential recall. 
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