
Behavioral Testability and Test Pattern Generation
of the Hopfield Network Model

Cesare Alippi, Franco Fummi, Vincenzo Piuri, Mariagiovanna Sami, Donatella Sciuto
Dipartimento di Elettronica e Informazione, Politecnico di Milano

piazza L. da Vinci 32,I-20133 Milano, Italy

Abstract

The problem of testability and test pattern generation at
the highest abstraction level, i.e., based on the
network's behavior, is here considered for Hopfield
networks. Complete testability is proved. A test pattern
generation approach based on creation of an equivalent
Finite State Machine is presented, functional test
pattern generation having being proved to allow vely
high coverage of logic-level faults in the case of FSMs.
An eflcient algorithm, using BDDs, is finally described.

1. Introduction

Recent literature has made evident a trend towards
qualitative evaluation of system testability at the
highest, i.e. behavioral, abstraction model. Such an
approach can provide guidelines for choice of
subsequent implementation alternatives; recent
published examples are provided, e.g. by [1, 21 and, in
the neural network domain, by [3]. Even more relevant
efforts have been dedicated to the problem of
functional-level test pattern generation (usually, the
term "behavioral" is in this case adopted only for
microprocessors). The justification of such trend can be
found both in the extreme complexity of VLSI devices,
making conventional techniques unmanageable, and in
the possibility of creating test patterns as far as possible
independent of the final silicon implementation. In
particular, the functional test generation approach has
been proved very rewarding in the case of Finite-State
Machines; test patterns derived for a purely functional
error model and on the basis of the state table only have
experimentally given very high fault coverage for
different types of implementation technologies (e.g.,
random logic, PLA) and for related fault models [4, 5 ,

In the present paper, the functional approach is
adopted both to evaluate testability and to provide
efficient test pattern generation for Hopfield networks.

61.

We start from the standard Hopfield paradigm
definition [7]:

where xi(t) is the output of the i-th neuron at time t , xf t -
I) the output of the j-th neuron at the previous iteration,
wg is the interconnection weight between neurons i and
j , 8i is the bias of neuron i , and f i is the non-linear
activation function (usually taken as the signum or step
function).

We assume that learning has been perfected, so the
values of the weights wg are determined and the
network is able to reach a steady output for any input
pattern. Without loss of generality, we consider that the
possible values of xi are only { 0, I }. We restrict our
present analysis to the parallel-type recalling procedure
of the Hopfield networks: the initial input xi(td is set in
each neuron simultaneously; the network evolves
towards the final steady state so that, at each iteration,
the output updating is performed within each neuron
simultaneously.
In our analysis, we distinguish between errors in the
network's outputs due to faults and errors which are
intrinsic in the neural paradigm due to incomplete
classification and generalization capabilities provided
by the actual learning procedure. In the presence of the
second class of output errors, even if they are related to
an undesired neural behavior, testability and testing can
be considered as in the desired behavior since the
undesired behavior is part of the whole nominal
behavior generated by the adopted learning procedure.
Therefore, we concentrate our attention on the
identification of erroneous outputs due to faults.
No assumption is made on the implementation
technology as well as on the supporting architecture,
excepting for the request of explicit synchronization
with respect to a time base.

The first problem in testing is the preliminary
evaluation of the testability of the whole system at
behavioral level [1, 21, i.e., the possibility of providing
and propagating the necessary test patterns for error

J

0-7803-1901-X/94 $4.00 01994 IEEE 457 1

excitation (controllability) and the possibility of
observing the results generated by the circuit under test
(observability). In [3], we adopted a behavioral
approach at the abstraction level of the neural operators
for the case of multi-layered feed-forward networks. In
Section 2, we discuss this figure of merit of the neural
paradigm for Hopfield networks, i.e., in the presence of
feedback loops.

A subsequent, even more important problem, is that
of test pattern generation. Hopfield networks of large
dimensions have already been implemented [SI;
moreover, such different implementation approaches as
analog, digital and mixed solutions have been presented
in the literature. A low level test generation approach
would involve separate test pattern generation for each
implementation alternative; moreover, such procedure
would be very complex both for a digital
implementation (the Hopfield network is a sequential
one) and, even more, for an analog implementation.

In Section 3, we introduce an FSM modeling
approach for Hopfield networks. It will be seen that
such model allows a very efficient test pattern
generation with reference to the "single-transition" fault
model adopted for FSM functional testing [9]. In fact,
complete coverage can be reached by a procedure
whose complexity is linear with the number of states.
Thus, we achieve test patterns valid for any
implementation satisfying to the above recalled
restrictions (parallel recall, explicitly synchronous
operation). Section 4 presents a detailed description of
the behavioral test procedure generation.

2. Testability analysis

The testability issue for any system can be
summarized as the possibility of total controllability and
observability, where by controllability we denote the
possibility of propagating arbitrary test patterns from
the system's inputs to the component whose possible
error must be tested, while by observability we denote
the possibility of propagating the results produced by
the component under test up to the system's outputs.

In the case of the Hopfield network, behavioral
testability can be seen as the possibility of forcing the
network into an arbitrary state and of verifying the
correct transition to its next state. By nature, an arbitrary
state can be applied as an input configuration, i.e., the
machine is completely controllable.

In the same way, the outcome of the transition, i.e.,
the next state, can be directly read on the network
outputs, so that the machine is completely observable.

As a consequence, any Hopfild network afforris
complete behavioral testability. Actual testability will
then depend on the architectural and technological
solutions; behavioral testability constitutes an upper
bound for lower-level (e.g., gate-level) testability (it is
respected in particular if one-to-one mapping of
operators onto components is adopted).

3. FSM modeling of the Hopfield network

The classical definition of a finite state machine M
is a quintuple <S, I, 0, 6, h>, where S is the non-void
and finite set of states, I is the finite input alphabet, 6 is
the next state function defined as 6: SxI + S and h is
the output function, defined as h: S + 0 (we adopt here
the Moore model). Operation of an FSM at the
functional level is best described by a state diagram or
(which is equivalent) a state table.

Gate-level testing of FSMs involves relevant
difficulties in test pattern generation [l 11; on the other
hand, recent papers have proved that test approaches
based on a functional error model - namely, the so-
called single-transition fault model - and developing
test patterns on the basis of the information provided by
the state diagram only actually grant very good fault
coverage even for lower-level (i.e., logic level) faults.
We will now prove, first of all, that the Hopfield
network is well representable by an equivalent FSM,
and then we develop an FSM-based functional test
generation approach valid for Hopfield networks.

Description of the Hopfield paradigm by using a
FSM can be performed by introducing the following
mapping between neural and FSM entities.
Each state of the Hopfield network, i.e., each output
pattern x, is associated with one state s of the FSM; the
output xi of the i-th neuron coincides with the i-th bit of
the state coding s.
The output alphabet 0 coincides with the set of states S.
The input alphabet I can actually be taken to be the void
set; in fact, operation of the Hopfield net proceeds by
forcing an initial state (coinciding with the input
pattern) and then having the network evolve in an
autonomous way (without presenting any further input
patterns), controlled by the synchronization signal only,
until a steady state is reached. This justifies our
assumption of a void input alphabet to the associated
FSM model.
As for the next state function 6, defined now as 6: S +
S, given any state si, the next state sj is computed by
application of equation (1). Two instances may occur;
either s j f s i , and equation (1) is applied again at the

4572

next step, or s.=s; i.e., a steady state has been reached
and computation stops until a new pattern is presented.
Considering the operation of a Hopfield network whose
weight matrix W has been perfected and for which
parallel recall approach is adopted, given any input
pattern Zi* the network operates in a deterministic way,
so that the associated FSM will evolve through a
sequence of states sjeIi:, si], s t , ... sf, sp being the
steady state associated Ii .
The output function h is the identity function since the
Hopfield output coincides with the state; therefore, the
output alphabet is identical to the set of state coding.

When learning has been perfected, an n-input
Hopfield network presents a number of attracting states
(attractors), i.e. the steady states reached by the
network when an input pattern is applied (usually, this
involves transition through a number of non-steady
states). If learning has been perfected by using center-
of-class patterns all orthogonal to each other, only the
desired attractors will be present [7]; otherwise,
spurious attractors will in general appear in the system's

J

behavior.

W =

2 2 0 - 2

2 2 0 - 2

0 0 2 0

-2 -2 0 2

Figure 1 - The state graph for an Hopfield network: the
weight matrix of the HopJeld network (a), the state
graph (b).

Considering as an example a four-neuron Hopfield
network characterized by the weight matrix W in fig. 1 a,
application of the input pattern 001 0 leads to creation of
the state sequence 001 0, I1 11, 11 10 (steady state), that
can be represented as an oriented path in a state graph.
Correct operation of the network grants that each state
will be traversed only once. Thus, the state graph
segment obtained is a simple directed path from the
initial state si to the related attractor sf.

Whenever we apply to the network an input pattern
corresponding to any intermediate state sf of a
previously identified path, the state sequence created
starting from sf coincides with the subsequence sf,
slk+l , ..., sf of the complete path (this happens, e.g., if
the input pattern is 11 11).

If another input pattern I . is applied leading to the
same attractor sf, the directed path associated with such
an input will either converge with the previous one in
the fmal state, or else share with it a final segment
(obviously including the final state). For example, for
the steady state 11 10, the first case is achieved starting
from the input state 1010, leading to sequence 1010,
I 1 10, while the second one is generated by the input
state 1011, leading to state 0010.

By applying all input patterns leading to the same
steady state sf, an acyclic directed subgraph is built
containing all and only the initial states sharing sf as
attractor. An example is given by the subgraph where
the states converge to the steady state 11 10 in figure 1.
This subgraph is similar to an n-ary tree; however, the
oriented paths are not directed from the root (in our
case, the attractor I 1 10) to the leaves, but they are in the
reverse direction.

Similar subgraphs can be created for each attractor
in the neural paradigm. Given the determinism of the
parallel recall approach, these subgraphs are disjoint.
The complete graph representing the FSM behavior is
given by the union of all the above subgraphs;
therefore, it is similar to a forest (see fig. lb).
This basic characteristic does not change even in the
presence of spurious attractors. When only expected
attractors are present in the neural paradigm, the set of
possible states is partitioned into disjoint subsets each
associated with an expected attractor. Similarly, the
state graph is partitioned into disjoint subgraphs: each
of them is associated with an attractor and contains all
and only the initial states leading to such an attractor.
Each possible state belongs to exactly one subgraph.
When spurious attractors occur in the neural definition,
the set of states is again partitioned into disjoint sets: in
figure 1, only 1110 and 1100 are expected attractors
while 0000,0001 and 001 1 are spurious ones. States not
associated with expected attractors are partitioned into
subsets associated with the spurious attractors. As far as

4573

definition of the FSM is concerned, there is no
differences between these two types of subsets.

Note that, as far as testing is concerning, spurious
attractors and the related subgraphs will be treated in
principle just as expected attractors and the related
states subgraphs.

All the about assumed that the whole input space of
the Hopfield network was meaningful, i.e., that all 2n
binary configurations over x p x n could be forced as
initial states. As a consequence the associated FSM
contains exactly 2n different states. If on the contrary
the input space is partitioned into a set of allowable
patterns XA and a set of unacceptable patterns Xu,
states associated with patterns in XA may appeared in
the state graph in any position (ether as leaves or as
nodes internal to a path or as roots) while states
associated with patterns in X u may never appear as
leaves or roots. They will ether be internal to a path or
not appear at all and the state graph, which may
therefore consist of less than 2n states.

4. Test pattern generation for the FSM
model of the Hopfield network

By analyzing the state transition graph of the FSM
modeling the Hopfield network, we can derive a
strategy for creating the test procedure. Testing of an
FSM at behavioral level aims at verifying if all allowed
transitions between states (i.e., all transitions defined in
the state graph) are correctly performed. If we adopt a
single state transition fault model, an error can alter
only one transition either in its output and/or in its next-
state [4].

Due to the characteristics of the Hopfield
networks, the starting state si of the transition under test
can always be reached and controlled. In fact, if the
starting state belongs to XA, it can be directly set as the
initial state of the network at time to. Otherwise, a
pattern in XA associated with a state sk and such that a
path from sk to si exists in the state graph must be
selected and applied to the network. The path from sk to
si constitutes the set-up sequence for the transition
under test. The application of a set-up sequence allows
testing at the same time all traversed transitions, since
each transition is directly observable.

After the network has been set in the starting state
for the transition under test, testing such a transition
means simply performing an iteration of the neural
computation according to equation (1) and observing
the output result. The transition has been correctly
performed if the state reached coincides with the
expected one.

The set of input patterns that must be applied to the
network, to test all transitions in the state graph, is the
test procedure of the network at behavioral level.
Obviously, it is not unique due to the arbitrary order of
examination of the transitions.
To minimize the time required to test a device
implementing the Hopfield network, we need to
minimize the number of patterns belonging to the test
procedure. Each test pattern is composed of a set-up
sequence (which can be empty) and the transition under
test. A test pattern completely included into another one
can be discarded; for example (see figure 1) test pattern
0111,0010, which tests the transition outgoing from
state 0111, is completely included in the test pattern
011 1,0010,1111,1110, which tests the transition
outgoing from state 11 11.
The minimum test set is composed of all the input
patterns corresponding to the leaves: in this case the
Hopfield network is constrained to reach the steady
state and thus to traverse and test all admissible
transitions.
In our example, the minimum test procedure is given by
the following 11 patterns: 0001, 001 1, 0100, 0101,

Generation of the minimum test procedure implies
complete exploration of the state graph of the FSM
associated with the Hopfield network. An explicit
description may require a large amount of memory and
a long time to verify if a state has been already
examined; these requirements exponentially grow
according to the size of the Hopfield network (i.e., with
the number of neurons). To minimize the storage and
the computation time we suggest to adopt an implicit
approach for describing and managing the FSM

Thus, the deterministic approach, previously
described, is converted into a random approach that
performs a pseudo-exhaustive analysis of the admissible
input patterns (states). A possible test pattern is
randomly generated and simulated until the steady state
is reached. All the traversed transitions are thus tested
and set-up sequences are no longer necessary. For
example the randomly generated input 0010 (see
figure 1) enables testing of all transitions between state
0010 and the steady state 1110. If the randomly
generated input (in this case 0010) is not a leaf, it will
be removed from the test set when one of its
predecessors will be randomly generated (in this case
101 1 or 01 11). Note that the direct generation of the
input configurations corresponding to the leaves is not
feasible due to the impossibility of explicitly describing
the state transition graph of the FSM.

The use of Binary Decision Diagrams (BDDs) for
testing [12, 131 is becoming more and more popular, in
particular because BDDs allow to implicitly enumerate

0110,0111,1000,1001,1010,1011,1101.

4574

FSM's states [14]. The following description, of the
proposed algorithm, relates to the standard operations
on Reduced Ordered BDDs (ROBDDs) defined in [lo].

BDDs are binary trees composed of nodes
representing variables; each node has a pair of outgoing
edges representing its possible binary values (I or 0);
edges can connect a node to another one or to a leaf. A
path starting from the root of the BDDs and ending into
a TRUE (1) leaf can be seen as an algebraic product; all
the variables, traversed by the path, assume the value of
the associated incoming edges. For example, figure 2
(a) shows the BDD for the product 0010; that can be
derived looking at the unique path starting from the root
(node 0) and ending into the TRUE leaf (with the
convention of left edge equal to 1 and right edge to 0).
A set of binary configurations may be represented by a
single BDD built by or-ing the BDDs of the single
configurations.

Let us define S as the BDD representing all
possible states (i.e., 2n if all input patterns are
allowable). At the beginning of the algorithm, S is
composed of a single node (the TRUE node) that
represents the inclusion in S of all possible input
configurations. Such a circumstance dramatically
highlights the efficiency of BDDs in relation to explicit
techniques for storing binary information: only one
node represent 2n objects. If only a subset of the
possible 2n configurations is allowed, the S set includes
only the admissible inputs. Let us define E as the BDD
representing the set of already explored states: at the
first step of the algorithm E is the FALSE node since no
node has been explored yet. Note that E is the
complement of S: definition of two BDD's is useful to
clearly describe the algorithm, but only one must be
used in the actual implementation of the algorithm.

The proposed approach uses the activation function
f to analyze the network evolution until the steady state
is reached. At each clock tick, the network changes state
or remains in the final steady state: our exploration
algorithm generates a BDD C for the current state by
using n-1 times the apply-and operation on BDD's, as
defined in [IO] Such an operation performs the
algebraic and operation between two BDDs. One
represents the current product and the other the current
variable. The complexity of the apply operation is
quadratic with the dimension of the two involved
BDD's, but in this case one of the two BDDs has size
equal to I (the variable) and the number of nodes of the
other one is smaller than n. Thus, the final complexity
for the construction of C is n(n+1)/2.
Whenever a new state is reached, its BDD C is
compared with the set E of already explored states: if C
is included in E, the exploration terminates and a new

input pattern is selected; otherwise, the current state C
is added to E by using the apply-or operation (see [lo])
and a new current state is computed via the activation
function J:

patterns: 0010

patterns: 0010
1111

8 0 & 0

(b)

patterns: 0010
1111
1110

E? && 0 3 0

Figure 2 - The BDD'S trees for compact pattern
generation: the tree ajier the first pattern (a), the
second one (b), and the third one (c).

4575

Verifying that C is included in E is performed by the
intersect operation (see [lo]). If the intersect operation
is successful, and the current state is also a test pattem,
such a pattem can be removed from the test set since it
means the inclusion of the sequence, starting from C,
into the sequence starting from the current input.
Complexity of the intersect operation is linear with the
number of nodes of the smaller BDD involved (in this
case C). Since the number of nodes in C is always
equal to n, the above verification is performed in a very
efficient way.
Generation of a new input pattem can be easily
performed by traversing, in a random way, S from the
root to a leaf. Also complexity of this operation is
proportional to n (length of every path in S is at most
equal to n).

The use of BDDs allows to generate the test
patterns by analyzing the set of states reached by each
input pattem.

[71

5. Concluding remarks

The approach here presented allows to design a test
procedure for a Hopfield network independently of final
implementation. Previous research has proved the
functional approach chosen to be effective in the case of
FSMs; thus, given the common logical fault model, the
same rate of fault coverage can be deduced for digital
implementations of Hopfield networks. Simulations will
be carried out to check whether the same extends to
fully analog implementations.

All results presented here relate to the parallel-
recall approach; at present, research is under way to
determine an efficient extension to the case of
sequential recall.

6. References

[l] C.H. Chen, C. Wu, D.G. Saab, "BETA:
behavioral testability analysis", Proc. ICCAD,
Santa Clara, 1991

M. Bombana, G. Buonanno, P. Cavallaro, D.
Sciuto, G. Zara, "A multi--level testability
assistant for VLSI design", Proc. EuroDAC 92,
Hambourg, Germany, 1992
V. Piuri, M. Sami, D. Sciuto, R. Stefanelli, "A
behavioral approach to testability of neural
networks", Proc. IJCNN '92, Baltimore, 1992
K.T. Cheng, J.Y. Jou, "Functional Test
Generation for Finite State Machines", Proc.
IEEE ITC, 1990
I. Pomeranz, S.M. Reddy, "On Achieving a
Complete Fault Coverage for Sequential
Machines Using the Transition Fault Model",
Proc. IEEE DAC, 1991
G. Buonanno, F. Fummi, D. Sciuto, "Functional
Fault Model and Gate Level Coverage for
Sequential Architectures", Proc. IEEE ICCD,
1993
J. Hertz, A. Krogh, R.G. Palmer, Introduction to
the Theory of Neural Computation, Addison-
Wesley Publishing Co., 1991
Proc. WCNN93, Portland, 1993
K.T. Cheng, J.Y. Jou, "A Single State-Transition
Fault Model for Sequential Machines", Proc.
IEEE ICCAD, 1990
K.S. Brace, R.L. Rundell, R.E. Bryant, "Efficient
Implementation of a BDD Package", Proc. 27th
ACWIEEE DAC, 1990
M. Abramovici, M.A. Breuer, A.D. Friedman,
Digital Systems Testing and Testable Design,
Computer Science Press, 1990
S.B. Akers, "Binary Decision Diagram", IEEE
Transactions on Computers, June 1978
R.E. Bryant, "Graph-Based Algorithms for
Boolean Function Manipulation", IEEE
Transactions on Computers, August 1986
H.J. Touati, H. Savoj, B. Lin, R. Brayton, A.
Sangiovanni-Vincentelli, "Implicit State
Enumeration of Finite State Machines using
BDDs", Proc. IEEE ICCAD, 1988

4576

