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Abstract 
An innovative neural-based approach for function 

approximation is proposed by means of the spectral 
analysis of the function y(x) to be approximated. 
Approximation is obtained by the spectral composition of 
the approximating function Y ( x )  performed by a neural 
network. The synthesis procedure for the neural network 
ensures the minimal dimension of the network itselj 
according to the chosen approximation error. Parameters 
adaptation is very fast. Since the most of the structure is 
independent from the particular approximated function, 
the circuit architecture implementing the network can be 
easily modularized for architecture adaptation. 

1. Introduction 

Neural technologies are successfully applied to solve 
the function approximation problem starting from a 
representative set of input-output pairs of patterns. In 
particular, one-hidden layer networks were proven to be 
universal approximators if a certain degree of smoothness 
on the unknown function is imposed [l]. However, 
designing and tailoring the neural network to solve a 
specific approximation problem may often become 
complex tasks, because they imply identification both of 
the topological structure (i.e., the size of the hidden layer) 
and of the operating parameter configuration (i.e., the 
interconnection weights and thresholds). 
Typically, a tentative network is first created and 
dimensioned by exploiting the knowledge of experts; then, 
it is trained by using an error back-propagation algorithm. 
Finally, the validation of the final configured network is 
performed to verify the recall error and the generalization 
capabilities. Such an approach suffers of some drawbacks: 
1. Overfitting may happen when the network has too 

degrees of freedom with respect to the number and the 
quality of the input/output pairs to be learnt. The 
training error (measured while the training patterns are 
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applied to network’s inputs) is very small but the 
generalization error (measured for patterns which have 
not been used during the learning phase) can be very 
large. 

2. The number of input-output pairs used during learning 
in order to reach a low validation error cannot be a 
priori computed. If few patterns are used, the network 
shows poor generalization capability because it has 
learnt only one small part of the information contained 
in data and, as a consequence, it cannot predict the 
correct output corresponding to a never seen input. 
Vice versa, a great bulk of training patterns can require 
more hidden neurons. 

3. The whole design and tailoring process is often too 
time consuming, particularly when the output error 
surface has more local minima and back-propagation 
algorithms convergence is more difficult. 

In this paper we propose an innovative solution to the 
function approximation problem based on the spectral 
composition performed by a minimal neural network. 
Particularly, in Sections 2 we show how to represent a 
function y=f(x) by its Fourier Transform spectrum by 
starting from its samples, i.e. the input/output pairs 
measured directly on the system which is characterized by 
the transfer function y=f(x) (e.g., a component of a 
complex plant). 

The spectral composition circuit is discussed in 
Section 3: we describe how it runs and how its internal 
parameter (i.e., the neural network’s weights) can be 
adapted to the needs of the specific approximation 
problem. Since the learning procedure is executed by 
adapting the connection weights to obtain the required 
harmonic components at networks output, it is faster than 
other procedures and the generalization ability is improved 
respect to traditional neural approach. Besides, the 
network is topologically minimal. In Section 4, examples 
are given. 

A variant is then proposed in Section 5 to deal with the 
possibility of training the neural network directly on the 
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inpudoutput pairs, without performing the Fourier 
Transform of y=f(x). The adopted approach guarantees 
good approximation abilities, requiring a shorter learning 
time than the one obtainable with the traditional fully 
backpropagation algorithm. 

2. Spectral analysis of input/output pairs 

Given the periodic function v=v(t) ~11th period T, we 
can sample it and obtain v=v(k), k=O..N-I, where N is the 
number of samples. According to the Nyquist theorem [2], 
if we choose the sample frequencyf,. higher than twice the 
maximal harmonic frequency, no informatiion is lost during 
sampling, i.e., the initial function can be rebuilt by using 
the samples themselves. The spectrum of v(t) can be 
analyzing by computing the Discrete Fourier Transform 
(DFT): 

(1) 
2n V(h) = -xv(k)e-j”k9 with 4 I= - 

k=O N 

1 N-l 

where V(0) is the offset (mean of v(k)); IV(h)l, h=l..LNL?], 
is one half of the h-th harmonic’s amplitude, i.e., of the 
harmonic whose frequency is h times UT. :Note that V(h) is 
periodic, with period N, and V(N-h)=conj(V(h)): the set of 
V(h), h=O..lND J, contains all spectral information about 
the function v(t). The FFT algorithm (Fast Fourier 
Transform) can be used instead of the DFT to speed up the 
computation. 

Consider now a generic (non-periodic) function y=f(x), 
X E [ X , .  xz], that has to be approximated. We transform Ax) 
in a periodic function, by applying to its input a periodic 
signal such as sinusoid: 

To sample y(t)=f(x(t)), we substitute the ratio t/T by 
WN: 

x + x ,  x 2 - x ,  . 2 n  x(k) = + - sin(--) 
2 2 N 

Finally, we compute the DFT. To avoid aliasing, N 
must be grater than fcT, wheref,. is the Nyquist frequency. 
However, fc is difficult to be computed because we do not 
know the spectrum of y(t). We cain make some 
experiments by considering large values for N and, then, 
by checking this value with respect to the up-limit 
frequency, i.e., the lowest frequency above which the 
harmonics are null (or below a very small threshold). 

V(h)’s contain all the information needed for function 
reconstruction [2]: 

LNIZJ 2hz 
y( t )  = V(0) + 2 reul(V( h))cos(- t )  + 

k=l T 
- imug(V(h))sin(Ft) 2hn 

(4) 

Note that V(h)’s are real and imaginary numbers, not 
complex ones. This is due to the fact that y=f(x) receives a 
sinusoid with a null angle of phase; in particular, if h is 
odd then V(h) is imaginary, otherwise it is real. We can 
rewrite Eq. 4 as: 

LNlZ  

y(t) = V(0) + 2 xtreuI(V(h)) - imug(V(h))] 
I r = l  

sin[fi ~t 2hn if h is even] 
( 5 )  

2hn - if h is odd 

Generally, we do not know the analytical expression of 
y=f(x), as we discussed above, since y=f(x) is often the 
transfer function of a physical component inside a possibly 
complex system (like a plant to be controlled in strict real 
time by digital devices). Besides, the goal of the function 
approximation is to identify the behavior of that system by 
modeling it starting from inpudoutput pairs measured 
directly on the real system. 

In this case, we can compute the DFT in two different 
ways, according to the particular structure of the system: 
1. Let the input x be Completely controlled by the user. It 

is therefore sufficient to set x=x(k) (see Eq. 3) and 
measure the corresponding y(k) at the system’s output. 
Then, the DFT is computed. 

2. If the system’s input cannot be completely controlled 
by the user, we put the system in the normal running 
mode and sample the inpudoutput pairs until all the x 
values corresponding to k=O..N-1 in Eq. 3 are covered. 
Then, we sort the y samples according to the order of x 
indicated in Eq. 3 for ascending k, and we compute the 
DFT. 

3. Spectral composition 

Approximating a function in the frequency domain 
means reproducing its harmonics with a given maximum 
error (in amplitude and phase). This error can be 
distributed or on all the harmonics either on a group of 
them. Let’s take into consideration the second case. 

We suppose that y=ffx) must be approximated with an 
error which is upper limited by a pre-defined small 
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threshold. This can be simply done by band limiting the 
function, i.e., by ignoring all the harmonics whose 
frequencies are greater than the band boundary. The band 
is chosen according to Eq. 6,  which states that the 
approximation error is upper limited by the sum of all the 
out-of-band harmonics’ amplitudes: 

( 6 )  maxly - j l ~  2 %lv(h)l 
h=N,+I 

where ŷ  is the approximating function and Nu is the 
number of inside band harmonics (except the offset). 

If the spectrum’s slope at the band boundary is 
sufficiently high, the amplitude of the first outside-band 
harmonic is a good estimate of the final error. Generally, it 
is sufficient to fix the band limit according to this criterion 
and, then, increase or decrease the band according to the 
measured error. 

For these reasons, we limit the sum in Eq. 5 to the first 
N, harmonics. The implementation of this equation is 
shown in Fig. 1. 

p;’ 

Let’s consider x=x(r) (see Eq. 2). It can be shown that 

(9) 

Therefore, the network’s output is given by Eq. 5 ,  in 
which the sum is limited to the first Nu terms; in other 
words, the i-th hidden neuron generates an harmonic 
whose frequency is i times the input sinusoid’s frequency 
and whose phase coincides with the phase of the i-th 
component of the DFT. 

Note that the hidden neurons’ weights are independent 
from the particular function to approximated. Therefore, 
the learning procedure consists only on setting the ci 
values according to the DFT of y=flx(k)), by using the 
formulas given above. 

The number of hidden neurons is minimal according to 
the approximation error, i.e. no network composed by less 
hidden units can be synthesize in order to obtain a smaller 
approximation error. In fact: 
1. if the number of harmonics Nu is preselected, the 

configuration of output weights which minimizes the 
approximation error is the one computed by the 
Fourier Transform; 

2. the approximation error decreases when the function is 
approximated by using more harmonics. 

4. Examples 

Neural Network 

Figure 1. The architecture for spectral 
composition. 

Transfer functions are summarized in Eq. 7: 

(7) 
i=l 

The normalizing block is needed to compress the input 
signal in the range [-1; +1], which is the domain of arcsin 
function. The neural network is composed of one hidden 
layer, whose Nu neurons are characterized by the 
sinusoidal activation function, and a linear output neuron. 
The weights a;, bi and ci are set according to: 

-i ifiiseven 
i i f i isodd 

a; = [F b; = { 
ci =2(reuE(V(i))-imag(V(i))) d = V(0) (8) 

We have applied our method to synthesize 
approximation networks for the five functions shown in 
Figs. 2, 3; approximation results are also given. For each 
function, the number Nu of harmonics is chosen by 
observing the function’s spectrum. The error is given by 
max)y(x) - j ( x ) l .  Due to the small approximation error, it 
is practically impossible to observe any difference 
between the original function and the approximated one in 
the graph. 

5. Learning by error backpropagation 

To avoid the computation of the DFT in order to 
configure the weights ci and d of the output neuron, we can 
train the network by using an error backpropagation 
algorithm starting from the input/output pairs. In 
particular, ai’s and b;’s are set according to Eq. 8, while ci 
and d are initially randomized and then adapted by 
learning in order to minimize the quadratic erroP 
E = x C ( y  - j)’ , where the sum is computed all over 

the input patterns. 
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Figure 3. 

Figure 4. 
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Note that initially we do not know an estimate of the 
final approximation error, because we have not computed 
the DFT. The number N ,  of hidden neurons is therefore 
empirically chosen by considering the approximation 
error in some experiments. An example is given in Fig. 4: 
the training procedure has been performed by using a 
Quasi-Newton algorithm [3]. 

Let’s consider the vector Z (belonging to the Nu- 
dimensional space) whose coordinates are defined by the 
hidden unit outputs zi. The vectors Z generated by the 
inputs of the training set constitute a basis for the Nu- 
dimensional space. Besides, j is a linear combination of 
2;’s via ti's. As a consequence, there is a unique solution 

that minimizes the considered quadratic error 
function. This solution can therefore be easily and 
quickly obtained by means of the training algorithm since 
the backpropagation algorithm has not to deal with local 
minima. 

6. Conclusions 

In this paper, we proposed an innovative neural based 
approach for the function approximation problem. Its 
design is based on the spectral analysis of the function 
y(x) to be approximated and the spectral composition of 
the approximating function j ( x ) .  This second part is 
performed by a minimal neural network which is 
configured according to the spectral components of y .  

The main advantages of this approach are the 
quickness in the neural network configuration (with 
respect to the traditional error backpropagation), the 
minimality of the network’s dimension and the 
independence of the most of the structure from the 
particular approximated function. For the last reason, the 
digital architecture implementing this approach can be 
modularized as shown in Fig. 5 ,  to allow an effective 
physical VLSI realization based on a cascade of limited- 
size chips. Besides, modularity supports also modular 
adaptation and extension of the system to deal with the 
specific application by using identical neural devices 
connected in a cascade. 

The weights bi are formed by six bits: the four less 
significant ones (from bo to b3) are pre-defined and form 

a number which ranges in [0..15]. The last two bits (b4 
and b’) are used to connect in the cascade the modules by 
shifting the harmonics’ frequency of 16-times and 
multiple of the fundamental one. Besides, the output 
neuron has a further input for taking into account the 
computation performed by the precedent modules. Each 
module can be consider as an independent chip. The 
designer must choose the number of inside-band 
harmonics and then connect and configure the 
appropriate number of modules. 

I 
vcc block 

b41 sin 

- 9 

Figure 5. Two 16-harmonics modules 
connected to obtain a 32-harmonics 
approximating circuit. 
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