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Abstract 

Checking railway sratus is critical to guarantee high 
operating safety, proper maintenance schedule, IOW 

maintenance and oprsrating costs. This (operation consists 
of the analysis of the rail profile and level as well as 
overall geometry and ondulation. Traditional detection 
systems are based on mechanical devices in contact with 
the track. Innovative approaches are based on laser 
scanning and image analysis. This paper presents an 
eflcient composite technique for track profile extraction 
with real-time image processing. High throughput is 
obtained by algorithmic pre-filtering to restrict the image 
area containing the track profile, while high accurac:) is 
achieved by neural reconstruction of the profile itsel$ 

1. Introduction 

Safety in railways and tramways its one of the key 
issues of public transportation companies. The state of the 
tracks is relevant in this perspective, in particular when 
high-speed trains are envisioned. Frequent monitoring of 
the tracks is therefore critical to plan proper and cost- 
effective maintenance. Detection of wear and deformation 
of tracks at an early stage allows for better scheduling of 
the maintenance, avoiding the need of immediate action 
when dangerous conditions are observed. Advance 
maintenance plannin:: reduces also cost:; since the limited 
human and equipment resources can be better used. 
Besides, accurate maintenance decreases the acoui;tic 
pollution due to bad coupling between wheel and track: 
this is relevant especially within the town borders. 

To detect the track profile by means of tactile 
techniques mechanical devices in contact with the track 
are traditionally used. The main characteristics of the 
profile are observed indirectly through ihe analysis of the 
position of suited leverages. This approach has several 
practical problems. Accuracy and completeness of profile 
reconstruction may be not accurate since the contact point 
between the mechanical sensor and the track may be large 
and restricted to a specific area of the track. Besides, 
components are subjcct to wear and difficulties in passing 
joint point areas. On the other hand, acceptable operation 
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quality needs dedicated rail carriages running at low 
speed. The above characteristics induce high costs of 
acquisition and operation of the track monitoring system. 
Moreover, only part of the track parameters (namely, 
geometry and ondulation) can be observed, while the 
most important ones (naimely, profile and level of the 
wear of the track) cannot be measured. 

An experimental systein available on the market was 
realized by using laser technologies to replace the tactile 
sensors. Relevance of this technique is wear avoidance 
due to lack of physical contact between moving 
components. This solution detects only the track surface 
in 8 points with an insufficient accuracy for early global 
detection of incipient deformations. Besides, detection of 
complex profiles (e.g., grooved track) is not allowed and a 
mechanical truing system lis required to align lasers. 

We considered an innovative approach based on image 
analysis and processing )to reconstruct the whole track 
profile. The image is genexated by lighting the track with 
a laser beam and acquired by a CCD camera. Since no 
contact between the monitoring system and the tracks is 
required, no wear occurs and the speed of the rail carriage 
can be higher. Carriage speed is limited only by the real- 
time processing ability of the monitoring system. Due to 
the amount of information to be processed, a high- 
performance architecture .is needed for real-time analysis 
since it is not possible to store all images and process 
them off line. Pipelining and parallelism allow higher 
performance when very high operating speed is required. 
Differences between recoinstructed and reference profiles 
point out the track deformations. High-level image 
analysis avoids for continuous and accurate alignment of 
the monitoring system with the track since the image 
processing method can be design to be self-aligning. 
Some companies performed partial experiments similar to 
ours, but none was reported to be satisfactory. 

In this paper we preseint the image processing system 
and the composite technique for real-time profile analysis. 
The composite approach consists of an algorithmic pre- 
processing to identify the strip - in the whole image - in 
which the track profile lays and a neural processing for 
fine profile reconstruction within such a strip. The system 
was tested on still images. 



2. The composite detection system 

The detection system consists of a laser source, whose 
beam is collimated by a suited optic lens into a light 
plane, two 5 12x512-pixel CCD cameras for complete 
optimum observation of the track, a digital processing 
system per camera, and a supervision system (Fig. 1). 
Each digital processing system performs real-time profile 
filtering and extraction by using a composite approach 
from images of the corresponding CCD camera. The 
supervision system collects the partial views of the track, 
reconstructs the whole profile, identifies and stores the 
deformed profiles. Real-time operation is needed since 
200 track sections per second must be captured and 
processed to guarantee a sufficient accuracy of 
deformation localization. The detection system is 
conceived for on-board operation on a regular train, even 
if - at the moment - was tested with still carriages only. 

Figure 1 : The detection system. 

Figure 2: The CCD images: (a) ideal, (b) real. 

Identification of the profile is made complex by the 
presence of noise and environmental disturbances that 
modify the ideal profile reflection to be observed by the 
camera (Fig. 2a). Real images (e.g., Fig. 2b and 3) are 

affected by environmental light, multiple reflections, track 
oxidation, greasy track, speckle effect due to track 
roughness, non-infinitesimal thickness of the laser plane 
scanning the track, optic aberrations, CCD sensor 
saturation, and image distortions due to vibrations. Note 
that the roughly approximate position of the profile in the 
image is known a priori since the laser and the cameras 
are still with the rail carriage. Besides, the profile is 
approximately laying in a linear direction, i.e., cutting the 
image in stripes only one point of the profile belongs to 
each stripe. This characteristic allows for parallel 
processing since each stripe can be analyzed 
independently to reach lOms image processing time 
without affecting the profile accuracy. 

In each column of the image localizing the position of 
the track profile means to find the position of the 
maximum laser reflection intensity. In the ideal case the 
intensity distribution along the column is Gaussian. 
Localizing the maximum implies therefore detect the 
position of the expected Gaussian profile with the 
maximum likelihood. 

To tackle this application, we tested both traditional 
filtering techniques with minimum-square approximation 
and neural network techniques. In the first case results 
were quite poor due to the inability of capturing all non- 
linearities and distorsions. In the second one the number 
of pixels to be processed in each column and the variety 
of the possible maximum light profile position leaded to 
large inaccurate networks, that are also difficult to train. 

It is worth noting that highly approximate localization 
of the area of interest in each image is quite trivial for the 
human observer, even without experience (see Fig. 2 and 
3). Track profile localization does not need to take into 
account all details in the whole column, but only the area 
around the maximum lighting. Experiments have shown 
that no information out of a 40-pixel strip centered 
approximately on the maximum lighting is necessary for 
accurate reconstruction of the track profile. Besides, this 
area of interest corresponds approximately to the zone 
around the highest-intensity Gaussian profile in the 
column. Such area can be easily found by identifying the 
maximum correlation of the light profile with the 
Gaussian reference: correlation can be effectively used. 
Finer localization of the maximum must deals with all 
non-linearities presented above, which are difficult to be 
captured algorithmically while are easy described by 
examples. In the literature, neural networks were proved 
effective for this kind of tasks. 

Our approach is therefore composite since exploits the 
best features and performance of both of these techniques 
within their individual application limits. Algorithmic 
filtering by correlation is used to center the attention on 
the 40-pixel strip (Fig. 4a), while the neural network 
perform the fine track profile localization at subpixel 
accuracy (Fig. 4b). 
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3. The algorithmic pre-filtering 
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Figure 3: Typic,al disturbances: (a) saturation, (b) low 
intensity, (c) enivironmental reflections; the observed 
images are on the left, typical light intensities along 

imagle columns are aln the right. 
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Figure 4: The composite prociessing approach: (a) 
algorithmic filtering, (b) neural processing. 

Identification of the region containing the 
track profile drawn by laser reflection within an 
image column is obtained by convolving the 
pixel intensity with a Gaussian distribution [I]. 
The convolution is repeated by positioning the 
maximum value of the Gaussian profile in each 
pixel of the column. The maximum value of the 
convolution corresponds to the position in which 
the light intensity is more similar to the expected 
Gaussian distribution. To reduce the 
computational complexity the convolution can 
be performed every few pixel positions instead 
of every pixel. 

Accuracy of the identification of the area of 
interest may be reduced by the presence of noise 
in the input image. Since the laser reflection has 
usually intensity definitely greater than noise, 
the Gaussian profile is likely understandable. 
Problems are actually due to modification in the 
Gaussian amplitude (related inaccuracies in the 
lens and focusing as well as to the real thickness 
of the laser plane), to track reflectivity variations 
leading to CCD saturation, and to system 
oscillations due to rail carriage motion. External 
sources of errors are the possible reflections of 
environmental lights. In Fig. 5, some typical 
light distributions are shown. 

The column analysis may have difficulties to 
discriminate a Gaussian distribution from a 
saturation border. An effective solution consists 
of applying the: convolution to the derivative 
both of the light intensity distribution and the 
Gaussian functiion. Even in the presence of 
strong external light leading to saturation, this 
approach maximizes the correlation in 
correspondence of the Gaussian laser reflection 
only (Fig. 6). This approach is successful also if 
the Gaussian profile is very near to the 
saturation region. 

4. The neural profile reconstruction 

The fine profile reconstruction is obtained by 
a more accurate analysis of the area of interest 
identified by the algorithmic pre-filtering. In 
each image column the neural approach 
identifies the position of the maximum of the 
Gaussian distribution in the 40-pixel strip by 
minimizing the difference between the 
theoretical Gaussian and the actual profiles. 
Separating the pre-filtering phase from the fine 
neural positioning allows for separating the 
accuracy of ireconstruction in the neural 
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Figure 5: The algorithmic pre-filtering: (a) the image, (b) 
the intensity distribution in columns A (typical) and B 

(with saturation), (c) the convolution values along these 
columns. 
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Figure 6: The derivative pre-filtering: the convolution 
values along the columns. 
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Figure 7: Learning error: (a) the training image, (b) non- 
uniform sampling, (c) uniform sampling. 

computation from the accuracy in windowing 
the area of interest. The profile is in fact 
reconstructed by adding the very accurate 
distance (measured with sub-pixel accuracy) of 
the maximum value from the bottom of the 
analyzed column in the strip to the distance 
(measured in pixels) of the bottom itself from 
the base of the whole image. The overall 
accuracy is therefore related only to the 
accuracy of the neural reconstruction. The 
accuracy of the pre-filtering (typically about 2 
pixels in our approach) is useful to center the 
Gaussian profile approximately in the middle of 
the strip so that the neural reconstruction can 
focus its abilities mainly on the central area of 
the strip to achieve very high accuracy 
efficiently. 

The neural network that was shown effective 
for the envisioned application is the Radial 
Basis Function (RBF) network [ 2 ] .  This kind of 
networks is suited for interpolating multi- 
variable functions. A RBF network has a Three- 
layered feed-forward topology. Input neurons 
are used to distribute the input values to all 
subsequent neurons. Each hidden neuron 
generates its output by applying a radial 
function (typically a Gaussian function) to the 
difference between the input vector and the 
centers’ vector. The output neuron computes the 
weighted sum of the hidden neurons’ outputs, 
possibly with a threshold. The number of hidden 
neurons and the centers can be determined from 
the analysis of the data available for training. A 
minimum-square algorithm is used to identify 
the weights. 

In our application the input layer is composed 
of 40 inputs corresponding to the 40 pixels of 
the image strip. Each input value is the intensity 
of the light collected by the corresponding CCD 
pixel. Experimentally 6 neurons were shown 
sufficient for the hidden layer to achieve the 
desired accuracy. 

To achieve an error goal equal to lo”, the 
training set was typically composed by 50 input 
vectors. The training set must contain enough 
examples to allow the network to capture the 
desired behavior. We do not need to use all 
columns in an image since the light reflection 
change gradually along the truck profile. The 
generalization ability allows the network to 
operate correctly even for reflections never 
previously seen. Conversely, if we sample the 
columns only in one part of the image, 
reconstruction will be accurate only in the 
portion learnt during training and may become 
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Figure 8: The percentage of successful profile 
identification with an error less than (a) 0.5 and 
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Figure 9: Hardening the training set for laser reflection 
width. 

very poor elsewhere (Figs. 7a and 7b). If 
samples are uniformly taken along the profile, 
the network achieves a uniform high accuracy 
(Fig. 7c): the standard deviation is 0.1 pixel. 

The robustness of the neural reconstruction 
with respect to variation of the reflection is 
critical for high accuracy. For example, as 
shown in Fig. 7, 40% variation of the reflection 
width makes the accuracy jump from 0.1 to over 
2 pixels. To create a robust network, we studied 
the effects of wrying the application parameters 
(e.g., shape of the reflection, saturation index, 
and noise) on synthetic images. Fig. 8 reports 
the percentage ability of successful 
identification of the profile with the specified 
accuracy. In the absence of noise, the 
deformation of the light width that the network 
is able to tolerate even if not present in the 
training set ranges between 0.8 and 1.4, i.e., the 
network tolerates better width enlargement. The 
behavior is similar also in the presence of noise. 
To balance this behavior, we suggest to 
introduce some reflections with width slightly 
smaller (e.g., 0.9) than the expected one in the 
training set to enhance the generalization ability 
symmetrically. 

Adding noise to the training set decreases the 
generalization ability of the network. The 
network recognizes well only the vectors very 
similar to the ones used in training. To deal with 
noise and accuracy contemporaneously, the 
training set must be created in a different way. 

To harden the network with respect to 
variation of the reflection shape, for each 
expected position of the profile we include 
several sample vectors corresponding to 
Gaussian profiles having different width. Since 
the non-saturated laser reflection is 5-pixel 
width, we added reflections 4- and 6-pixel wide. 
To avoid unnecessary generation of large 
networks, the training set is created without 
changing the total number of vectors: we 
uniformly extract samples from the set 
composed by profiles having all considered 
widths. Fig. 9 shows that this approach enlarges 
the correct recognition region: from 4 to 6 pixels 
the correct recognition is now at least 90% even 
in the presence of small noise. The network is 
also able to identify profiles with deformation 
index equal I O  1.5, i.e., a Gaussian reflection 
profile 7.5-pixel wide even if it was never seen. 
This behavior holds for a noise deviation up to 4 
pixels, which is relevant even in the real images. 
Higher generalization ability and noise 
immunity without increasing (sometimes even 
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Figure 10: Successful identification with error < 0.5 pixel 
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range from 4 to 5 pixels. 
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Figure 11 : Generalization ability vs, spread: (a) the error 
deviation, (b) the number of neurons required to perform 

identification. 

decreasing) the number of neurons can be achieved with the 
approach described above by increasing the number of different 
widths. The effectiveness of this constructive technique for the 
training set can be also observed in Fig. 10 as higher insensitivity to 
laser width variation and to noise is concerned. 

The generalization ability and the accuracy are also affected by 
the spread of the radial function, i.e., of the width at half height. In 
Fig. 11 the error deviation and the number of neurons are reported 

for different values of spread, in the case of 40 
noise-free validation vectors applied at the end 
of learning. The first relative minimum value of 
the error deviation is at 180, while the absolute 
minimum is at 230. Even if they are not so 
different for noise-free input vectors, the error 
deviation obtained in the case of noisy inputs 
having 5-pixel deviation becomes 0.198 and 
0.204 pixel, respectively. Therefore, the 
maximum generalization does not coincides 
with the absolute minimum error deviation vs. 
the spread. We experimentally observed that the 
optimum value corresponds to the minimum 
reached without discontinuities (i.e., 180 in the 
example). 

5. Conclusions 

An innovative approach to track profile 
measurement is presented. A real-time image- 
processing-based technique was adopted to 
reconstruct and measure the profile by analyzing 
a laser-scanned CCD-camera image. A 
prototype of the detection technology was tested 
for more than one year in the Milan 
underground, while the reconstruction technique 
was verified on simulated and real images. An 
accuracy of the same magnitude of the track 
roughness was achieved with a still monitoring 
system: typical resolution is 25pm. Similar 
results are also expected for system on board of 
a moving rail carriage. Simulations were 
performed to mimic light reflections and the 
damped small low-frequency oscillations that 
are typical of the moving carriages: results are 
still attractive and show the efficiency and the 
effectiveness of the proposed approach. A more 
extensive on-field experimentation is required to 
verify the real effects and interference of 
external light conditions, reflection, and 
vibrations as well as to certify the accuracy of 
the measurement system. 
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