
Exploiting Application Locality to Design Fast,
Low Power, Low Complexity Neural Classifiers

Cesare Alippi
Dipartimento di Elettronica e Informazione

Politecnico di Milano, Milano, Italy
alippi@elet.polimi.it

Fabio Scotti
Department of Information Technologies

Università degli Studi di Milano, Crema, Italy
fscotti@dti.unimi.it

Abstract— The paper provides a design methodology for
embedded classifiers particularly effective in those applications
characterised by a temporal locality of the inputs. By
exploiting application locality we reduce computational
complexity and cache misses (hence speeding up the execution)
as well as power consumption. A gated-parallel neural
classifier has been found to be a particularly suitable structure
since only one sub-classifier is active at time, the others being
switched off. Results from industrial applications show that the
suggested design methodology provide an accuracy
comparable with more traditional classifiers yet yielding a
significant complexity and execution time reduction.

I. INTRODUCTION
In general, classifiers are designed by keeping in mind

accuracy performance without taking care of constraints.
This has pushed the related research to suggest techniques
solely aiming at performance maximisation e.g., see, [1]
without taking care of implementation-related aspects in the
early phases of the classifier design cycle. Up to the best of
our knowledge the unique implementation-related aspects
considered at high abstraction level are related to the
robustness/sensitivity issue for their impact on finite
precision representation [2] and complexity reduction [3].

In this paper we address the classifier design problem by
considering a variant of the gated-parallel model which
allows the designer for integrating high level application
properties in the classification module more effectively than
standard monolithic, parallel, cascade, linear or hierarchical
families [4]. In particular, instead of considering a single
classifier (e.g., monolithic) dealing with the whole
classification problem, we envisage a number of sub-
classifiers activated by a master enabling module. The
resulting “multiplexed classifier” is such that the master
module enables only a sub-classifier at time, the others being
switched-off. The grouping output module envisaged in the
gated-parallel literature disappears for computationally
complexity reasons and we allow sub-classifiers to be
different in model nature and topology. A multiplexed
classifier design is particularly effective in those applications
possessing the temporal locality property (a sub-classifier
enabled at time t has high probability to be enabled also at
time t+τ) and the partitioning property (the enabling module
+ sub-classifier complexity is smaller than that of the
monolithic one).

In particular, the locality property, as in cache design,
holds when patterns to be classified are time dependent, as it
happens in classifiers working in several controlled
environments. While the locality property grants that the
enabled sub-classifier stays in the cache with high
probability (cache misses arise only when another sub-
classifier is loaded), the partitioning property implies that its
computational complexity is smaller than that of the
monolithic one (and hence, in addition to an independent
execution gain, it is likely the sub-classifier to fully reside in
the cache). In addition to the relevant power saving
associated with reduction of cache misses in a SW
implementation, all sub-classifiers but the active one can be
switched off with a further gain in power consumption
reduction. On the algorithm execution front both properties
grant a reduced execution time as it will be explained in
subsequent sections.

The novelties of the paper do not reside in the classifier
structure but in the suggested design methodology exploiting
application properties and integrating, at application level,
accuracy and complexity/low power consumption
constraints. The structure of the paper is as follows. The
design issues for multiplexed classifiers are given in section
II. Section III, by receiving the classifier delineated in
section II, explores the design space with genetic algorithms
to identify the most adequate classification families.
Experimental results are given in section IV.

II. A MULTIPLEXED CLASSIFIER DESIGN
The design of a multiplexed classifier requires solution to

the following subproblems:

1 identification of a suitable number k of sub-classifiers
and clustering of the classification input space in k sub-
domains, one for each sub-classifier;

2 selection of the features relevant to each sub-classifier;
3 design and configuration of the master enabling module;
4 selection and configuration of the k sub-classifiers.

Each step contributes to design a performing classifier as
well as influencing the complexity (power consumption and
execution time) aspect. To ease and make effective the
methodology, we separate the design in two phases aiming at
decoupling the accuracy from the complexity issue. In the
first phase (steps 1-3) the focus is primarily on complexity:
complexity reduction is obtained by acting on the number of

51420-7803-8834-8/05/$20.00 ©2005 IEEE.

classifiers and their topology yet leaving enough degrees of
freedom for a subsequent integration of the accuracy
requirement. The second phase (step 4), primarily focuses on
accuracy maximization by considering and configuring
adequate models for sub-classifiers meanwhile penalizing
complex solutions. We now detail the operations needed to
accomplish steps 1-3.

A. Domain partitioning
The problem associated with the determination of the

optimal sub-classifiers domain coincides with a data
clustering problem w.r.t. the input space. Clustering can be
carried out by considering the designer’s favourite algorithm;
here we considered a supervised Fuzzy C-Means clustering
technique [5] for its effectiveness and computational
simplicity. The number of clusters may either be given by
the user or can be identified by the clustering algorithm as
suggested in section 2.4 or, again, by considering the
following heuristic: for each subdomain k must be increased
by one whenever its partitioning into two halves provides
two classifiers each of which having an input complexity
below the starting one. The rationale is based on the fact that
child sub-classifiers requiring a reduced number of input
features are less complex than the father one requiring more
inputs. On the other hand, by increasing k we increase the
complexity of the master module: as such, a balance between
the two must be identified. We empirically discovered that a
reasonable k for industrial applications is below 7.

B. Feature selection
The feature selection step is fundamental in reducing the

complexity of the multiplexed classifier since it addresses
identification of the minimal number of input features to be
presented to each sub-classifier; since sub-classifiers operate
in a sub-domain it is likely that only few features will be
sufficient to solve the local classification tasks. The designer
can consider his favourite feature selection method: here, we
considered the method based on a feature relevance analysis
to solve the feature selection problem suggested in [6] for its
proven effectiveness in industrial applications.

C. Master module construction
The master module can be easily built with a KNN

classifier trained over the k centers of class identified in step
II.A. During the operational phase of the multiplexed
classifier the master module receives the pattern to be
classified and activates a sub-classifier. A KNN master
module provides a good accuracy/complexity compromise
when the number of sub-classifiers is not very high, we
should opt for a neural network of regression type otherwise.
We suggest the designer to select the least complex solution
between the two when k is above 7.

D. Complexity and application-level properties

In the following, we denote by MCΦ the multiplexed

classifier, by MΦ the monolithic classifier and by C the
complexity function. Without loss of generality we consider

the monolithic classifier as the reference one for its easy
configuration and wide use; of course we could use any other
optimal classifier designed over the whole data set.
Computational complexity must be associated with the
application code profiling which, for a classification problem
and a multiplexed classifier design, can be related to each
sub-classifier activation. In order to evaluate the complexity
of a computational flow we consider a classic approach
which assigns a complexity cost (weight) to each high level
instruction (e.g., see [7]). Indicative values for weights are
given in table 1 where we reasonably assumed one clock
cycle execution for register to register instructions. Weights
must be intended as non-dimensional values relative to the
integer sum (whose value is 1). The complexity (i.e., C or CI)
of a compiled code can then be estimated as the sum of the
frequencies of each instruction amplified by the
corresponding weight. We are assuming that non basic
instructions, such as squared roots or activation functions for
neurons, are either stored in a LUT table or expanded in
series by using basic instructions. At this abstraction level we
cannot differentiate cache accesses from memory ones; in the
following we consider the average weight between the two
every time we access memory.

Once the clustering algorithm has partitioned the
application space, it is natural to associate an activation
probability ()∫Ω=

I

dxxpPI to the generic I-th sub-

classifier. In other words PI denotes the probability that an
input pattern to be classified belongs to the I-th sub-classifier
domain of complexity CI (CI accounts both for the
complexity of the sub-classifier and that of the master
module.). The complexity can then be expressed as

() ∑
=

=Φ
k

I
IIMC CPC

1

 (2.1)

where the unknown probability can be estimated by the
activation frequencies coming from the application profiler.

TABLE I
Weights associated with instructions of the classifiers code
Instruction group Weight Instruction group Weight

Register Transfer Operation α = 1
Activation Function

Evaluation
α = 52

Floating Point Sum and Product α = 1 Read/Write Cache α = 10
Integer Sum and Product α = 1 Read/Write Memory α = 100

Several applications are characterized by time-dependent
inputs so that two consecutive input patters are related in
time. If we assume that the transformation from the input
space to the feature space is related in time then also the
associated input features will be time related. It is easy to
extend temporal locality properties of caching mechanisms
to multiplexed classifiers if we assume that the trajectory
described by inputs in the feature space is confined in a
limited region as it happens in automatic controlled
applications. To test whether temporal locality is interesting
to an application or not we can generate the ()τIΤ curve

5143

which provides, for different values of τ , the probability
that classifier I active at time t is continuously active up to
time t+τ . Similarly, we can consider sequential locality.

Locality properties have an immediate positive effect in
the caching mechanism with an obvious impact in power
consumption reduction. This positive effect is based on the
fact that only a sub-classifier is active at a time and that
properly configured sub-classifiers are most of time
significantly less complex than the monolithic classifier. An
automatic procedure for selecting the number of classifiers k
can be derived by exploiting the ()τIΤ curves: since it is our
interest to maximize temporal locality we can select the
optimal k as the one maximizing the ensemble locality

()∑∑
= =

Τ
k

I

N

I
1 1τ

τ , where N is the number of samples.

III. EXPLORING THE DESIGN SPACE
Once the topological structure of the classifier has been

fixed the next design step requires configuration of each sub-
classifier. This operation requires, for each sub-classifier:

1) identification of the most suitable classification
structure (KNN, RBF, FF, SVM,…);

2) determination of the classification model family/kernel
within each structure;

3) configuration/training of each sub-classifier model.

Obviously, the goal of the design activity is to configure a
multiplexed classifier MCΦ solving the
accuracy/complexity tradeoff. To this end we considered the
figure of merit (a different approach would involve
generation of Pareto’s optimal solutions):

()
()

()
()

Φ
Φ+

Φ
Φ=

Θ∈Φ
M

MC

M

MC
MCM A

A
C
CJ

MC

γmin, (3.1)

where ()⋅A is the accuracy performance function (e.g.,
estimated with cross-validation, k-fold Cross-validation or
Leave-one-Out). In the following, we consider cross-
validation techniques for ()⋅A and the mean squared error
loss function. 0≥γ is a weighting term for the accuracy
and the complexity contributions (in our applications we
identified a good accuracy/complexity performance with
γ =0.1). To optimize (3.1) we envisaged a genetic algorithm
optimization [8] by adopting standard selection, crossover
and mutation genetic operators. The chromosome structure
reflects the structure of the multiplexed classifier MCΦ . In
particular, information related to model hierarchy and model
family is coded in the chromosome for each of the k sub-
classifiers composing the classifier. As a consequence, the
chromosome is composed of 2k genes. For each sub-
classifier the first gene codes the model hierarchy, the second
the model family. KNN, FF, RBF and linear classification
hierarchies have been considered. Of course, we can decide

to enlarge the genes allele by adding other classification
families, i.e., SVM, Bayesian classifiers, etc. The second
gene codes the value K, the norm in KNN and the number of
hidden units and activation functions in FF and RBF.

IV. EXPERIMENTAL RESULTS
In this section we apply the methodology to three

industrial applications. Application -I1- refers to a quality
analysis process for the stainless steel laser cutting industry:
the goal is to judge during the operational phase the local
quality of the cut. Physical features are the cutting speed, the
pressure of the shielding gas and four features associated
with the sparks produced during the cutting: the spark jet
presence, the angle of sparks core w.r.t the normal, its
wideness angle and the angle containing the whole sparks jet.
Industrial application –I2- is related to a 3d-laser scanner for
railroad tracks profile analysis [9]. A processing systems
extracts the track profile from the retrieved images as
enlightened by a laser beam. A classification core is needed
to identify, within each image column, the presence of a laser
reflection.

The features extracted are minimum and maximum
intensity of the column, their difference, the standard
deviation and the maximum value of the convolution of the
column intensity with a reference gaussian pattern and the
energy of the derivate of the column intensity. Application –
I3- is related to a quality analysis for the laser spot welding
in the electronics manufacturing industry [10]. We identified
that the relevant features to the classification problem
(good/no-good weld) are the laser pulse energy, time of the
first significant minimum of the back-reflected laser power
signal, the time of turnpoint for the temperature sensor and
the plume delay. After having applied the first three steps of
the methodology we identify the topological structure and
the PIs of the sub-classifiers which, for the considered
benchmarks, are given in table 2. We observe that,
depending on the particular nature of the application, the
number of sub-classifiers, their activation probability PI, the
number of features f and the model nature can be
significantly different. The table also contains, for sake of
completeness, the complexity c of each sub-classifier and the
sub-classifier type, information derived from step 4 of the
methodology. No linear sub-classifiers have been selected
here.

TABLE II
the MCΦ s; f = feature number, c = complexity,

type = classifier type (FF=feedforward, DEG=degenerated),
PI = activation probability for sub-classifier I

 k 1,MCΦ
 2,MCΦ

 3,MCΦ

I1 3 f: 0
c: 1

Type: DEG
P1: 0.25

f: 5
c: 1158

Type: FF
P2: 0.29

f:4
c: 1496

Type: FF
P3: 0.46

I2 2 f: 7
c:752

Type: FF
P1: 0.14

f: 5
c: 616

Type:FF
P2: 0.86 - -

I3 3 f: 3
c:1496

Type: FF
P1: 0.37

f: 4
c: 1259

Type:FF
P2: 0.17

f:4
c: 1022

Type: FF
P3: 0.44

5144

The ()τIΤ curves are given in figure 1 where each sub-
figure contains the curves associated with all sub-classifiers
composing a multiplexed classifier. We represented in a
continuous line the reference curve τ−k defined as the one
whose inputs are independent and identically uniformly
distributed. Under such hypotheses there is no time-
dependency and temporal locality is absent. The more a

()τIΤ curve is above the reference curve the more the sub-
classifier possesses local temporal property.

The considered industrial applications show good local
temporality. For instance, module 2,MCΦ of application I2
shows a high activation probability from table 2 which
means that the sub-classifier (P2=0.86) is more active than
its companion (P1=0.14): in a Least Recently Used cache
block substitution policy the module will stay in the cache
with high probability (we also have to remind that sub-
classifiers are in general smaller than the monolithic one). In
addition, 2,MCΦ possesses an extremely good temporal

locality profile from figure 1: the probability that 2,MCΦ
will be active for all next 20 input patterns is above 0.8 with
an obvious impact on cache miss reduction.

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
I

I1

I = 1
I = 2
I = 3
Reference

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
I

I2

I = 1
I = 2
Reference

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
I

I3

I = 1
I = 2
I = 3
Reference

Figure 1. The ()τIΤ curves for the envisaged applications

TABLE III
Comparison of results in complexity and processing time

COMPLEXITY
TABLE MCΦ

 CΦ

Experi-
ment

Complexity Gain

)(
)(

MC

C

C
C

Φ
Φ

Accuracy
(% classif.

error)

Complexity Accuracy
(% classif.

error)

Complexity
(type)

I1 357,04 5 1629 2 581624 (KNN)
I2 1,99 1 1573 1 3125 (FF)
I3 3,69 18 1690 20 6236 (FF)

PROCESSING TIME TABLE
MCΦ

 CΦ

Experi-
ment

Execution Gain

)(
)(

MC

C

T
T

Φ
Φ

AMD
athlon xp
1.7GHz

500MB ram

Intel
P4 2 GHz

750BB ram

AMD
athlonXp,
1.7GHz

500MB ram

Intel
P4

2 GHz
750BB ram

 AMD Intel T µs T µs T µs T µs
I1 348,0 356,8 255 353 88742 125952
I2 1,8 1,7 241 335 425 585
I3 3,5 3,5 273 373 956 1319

We can finally consider step 4 of the methodology,
which requires the creation of the MCΦ classifiers. The

reference monolithic classifier CΦ required in (3.1) has

been selected among a set of monolithic classifiers with the
same procedure delineated to create the MCΦ ones. The
initial population required by GAs was composed of 20
randomly initialized MCΦ ; the genetic algorithms procedure
evolved for 100 generations. Results are shown in table 3.

Our experiments show that the methodology can produce
multiplexed classifiers whose accuracy is comparable to the
monolithic one but with a significant reduction in
complexity. In some cases the complexity gain, which
expresses how many times the monolithic classifier is more
complex than the multiplexed one, is very high. Finally, we
estimated the execution time per pattern presentation of both
monolithic and multiplexed classifiers on two processors; the
presence of not removable operating system processes was
averaged over 100 presentations of the whole data set for
each benchmark. We experienced that the gain in execution
time is comparable, within fluctuations associated with
uncontrollable OS processes (Windows 2000pro), with the
estimated gain in complexity given in table 3 hence showing
the effectiveness of the estimates (on which the genetic
optimisation phase is based).

CONCLUSIONS

The paper presents an application level methodology for
designing classification cores characterised by a reduced
complexity and improved execution time by partitioning the
classification space in sub-domains ruled by dedicated sub-
classifiers. The multiplexed nature of the classifier design
allows us to activate only a sub-classifier at a time while
others are switched off with an immediate reduction in
power consumption in applications experiencing temporal
locality. The presence of the partitioning property, in
addition to locality ones, reduces cache misses as well as
computational complexity with also a gain in execution time.

REFERENCES
[1] C. M. Bishop, Neural Networks for Pattern Recognition. New York:

Oxford, 1995.
[2] C.Alippi, L.Briozzo: Accuracy vs. Precision in Digital VLSI

Architectures for Signal Processing, IEEE-TC, Vol 47. No.4 ,1998
[3] P.J. Edwards, A.F.Murray, Towards Optimally Distributed

Computation, Neural Computation, Vol.10, 1998
[4] A.K. Jain, R.P.W. Duin, and Jianchang Mao, “Statistical pattern

recognition: A review”, IEEE-TPAMI, vol. 22, no. 1, 2000.
[5] A.K. Jain, R.C. Dubes, “Algorithms for Clustering Data”. N. J.

Englewood Cliff, Prentice Hall,1988.
[6] C. Alippi, P. Braione, V. Piuri, F. Scotti, “A methodological approach

to multisensor classification for innovative laser material processing
units” Proc. IEEE-IMTC, Budapest, Hungary, 2001

[7] D. Brooks, and al., “Wattch: A framework for architectural-level
power analysis and optimizations”, 27th ISCA, 2000.

[8] L.Davis, Handbook of GAs, Van Nostrand Reinhold, 1991
[9] C. Alippi, E. Casagrande, V. Piuri, F. Scotti, “Composite Real-Time

Image Processing for Railways Track Profile Measurement”, IEEE-
TIM, vol. 49, 2000

[10] C.Alippi, T.Blom: Neural Networks for Measurement and
Instrumentation in Laser Processing, NATO-Sciences Series: "Neural
Networks for Instrumentation, Measurement and Related Industrial
Applications", IOS Press, 2002

5145

