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Abstract— The paper provides a design methodology for 
embedded classifiers particularly effective in those applications 
characterised by a temporal locality of the inputs. By 
exploiting application locality we reduce computational 
complexity and cache misses (hence speeding up the execution) 
as well as power consumption. A gated-parallel neural 
classifier has been found to be a particularly suitable structure 
since only one sub-classifier is active at time, the others being 
switched off. Results from industrial applications show that the 
suggested design methodology provide an accuracy 
comparable with more traditional classifiers yet yielding a 
significant complexity and execution time reduction. 

I. INTRODUCTION  
In general, classifiers are designed by keeping in mind 

accuracy performance without taking care of constraints. 
This has pushed the related research to suggest techniques 
solely aiming at performance maximisation e.g., see, [1] 
without taking care of implementation-related aspects in the 
early phases of the classifier design cycle. Up to the best of 
our knowledge the unique implementation-related aspects 
considered at high abstraction level are related to the 
robustness/sensitivity issue for their impact on finite 
precision representation [2] and complexity reduction [3]. 

In this paper we address the classifier design problem by 
considering a variant of the gated-parallel model which 
allows the designer for integrating high level application 
properties in the classification module more effectively than 
standard monolithic, parallel, cascade, linear or hierarchical 
families [4]. In particular, instead of considering a single 
classifier (e.g., monolithic) dealing with the whole 
classification problem, we envisage a number of sub-
classifiers activated by a master enabling module. The 
resulting “multiplexed classifier” is such that the master 
module enables only a sub-classifier at time, the others being 
switched-off. The grouping output module envisaged in the 
gated-parallel literature disappears for computationally 
complexity reasons and we allow sub-classifiers to be 
different in model nature and topology. A multiplexed 
classifier design is particularly effective in those applications 
possessing the temporal locality property (a sub-classifier 
enabled at time t has high probability to be enabled also at 
time t+τ) and the partitioning property (the enabling module 
+ sub-classifier complexity is smaller than that of the 
monolithic one). 

In particular, the locality property, as in cache design, 
holds when patterns to be classified are time dependent, as it 
happens in classifiers working in several controlled 
environments. While the locality property grants that the 
enabled sub-classifier stays in the cache with high 
probability (cache misses arise only when another sub-
classifier is loaded), the partitioning property implies that its 
computational complexity is smaller than that of the 
monolithic one (and hence, in addition to an independent 
execution gain, it is likely the sub-classifier to fully reside in 
the cache). In addition to the relevant power saving 
associated with reduction of cache misses in a SW 
implementation, all sub-classifiers but the active one can be 
switched off with a further gain in power consumption 
reduction. On the algorithm execution front both properties 
grant a reduced execution time as it will be explained in 
subsequent sections.  

The novelties of the paper do not reside in the classifier 
structure but in the suggested design methodology exploiting 
application properties and integrating, at application level, 
accuracy and complexity/low power consumption 
constraints. The structure of the paper is as follows. The 
design issues for multiplexed classifiers are given in section 
II. Section III, by receiving the classifier delineated in 
section II, explores the design space with genetic algorithms 
to identify the most adequate classification families. 
Experimental results are given in section IV. 

II. A MULTIPLEXED CLASSIFIER DESIGN 
The design of a multiplexed classifier requires solution to 

the following subproblems: 

1 identification of a suitable number k of sub-classifiers 
and clustering of the classification input space in k sub-
domains, one for each sub-classifier; 

2 selection of the features relevant to each sub-classifier; 
3 design and configuration of the master enabling module; 
4 selection and configuration of the k sub-classifiers. 

Each step contributes to design a performing classifier as 
well as influencing the complexity (power consumption and 
execution time) aspect. To ease and make effective the 
methodology, we separate the design in two phases aiming at 
decoupling the accuracy from the complexity issue. In the 
first phase (steps 1-3) the focus is primarily on complexity: 
complexity reduction is obtained by acting on the number of 
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classifiers and their topology yet leaving enough degrees of 
freedom for a subsequent integration of the accuracy 
requirement. The second phase (step 4), primarily focuses on 
accuracy maximization by considering and configuring 
adequate models for sub-classifiers meanwhile penalizing 
complex solutions. We now detail the operations needed to 
accomplish steps 1-3. 

A. Domain partitioning  
The problem associated with the determination of the 

optimal sub-classifiers domain coincides with a data 
clustering problem w.r.t. the input space.  Clustering can be 
carried out by considering the designer’s favourite algorithm; 
here we considered a supervised Fuzzy C-Means clustering 
technique [5] for its effectiveness and computational 
simplicity. The number of clusters may either be given by 
the user or can be identified by the clustering algorithm as 
suggested in section 2.4 or, again, by considering the 
following heuristic: for each subdomain k must be increased 
by one whenever its partitioning into two halves provides 
two classifiers each of which having an input complexity 
below the starting one. The rationale is based on the fact that 
child sub-classifiers requiring a reduced number of input 
features are less complex than the father one requiring more 
inputs. On the other hand, by increasing k we increase the 
complexity of the master module: as such, a balance between 
the two must be identified. We empirically discovered that a 
reasonable k for industrial applications is below 7.  

B. Feature selection  
The feature selection step is fundamental in reducing the 

complexity of the multiplexed classifier since it addresses 
identification of the minimal number of input features to be 
presented to each sub-classifier; since sub-classifiers operate 
in a sub-domain it is likely that only few features will be 
sufficient to solve the local classification tasks. The designer 
can consider his favourite feature selection method: here, we 
considered the method based on a feature relevance analysis 
to solve the feature selection problem suggested in [6] for its 
proven effectiveness in industrial applications. 

C. Master module construction  
The master module can be easily built with a KNN 

classifier trained over the k centers of class identified in step 
II.A. During the operational phase of the multiplexed 
classifier the master module receives the pattern to be 
classified and activates a sub-classifier. A KNN master 
module provides a good accuracy/complexity compromise 
when the number of sub-classifiers is not very high, we 
should opt for a neural network of regression type otherwise. 
We suggest the designer to select the least complex solution 
between the two when k is above 7. 

D. Complexity and application-level properties 

In the following, we denote by MCΦ  the multiplexed 

classifier, by MΦ  the monolithic classifier and by C the 
complexity function. Without loss of generality we consider 

the monolithic classifier as the reference one for its easy 
configuration and wide use; of course we could use any other 
optimal classifier designed over the whole data set. 
Computational complexity must be associated with the 
application code profiling which, for a classification problem 
and a multiplexed classifier design, can be related to each 
sub-classifier activation. In order to evaluate the complexity 
of a computational flow we consider a classic approach 
which assigns a complexity cost (weight) to each high level 
instruction (e.g., see [7]). Indicative values for weights are 
given in table 1 where we reasonably assumed one clock 
cycle execution for register to register instructions. Weights 
must be intended as non-dimensional values relative to the 
integer sum (whose value is 1). The complexity (i.e., C or CI) 
of a compiled code can then be estimated as the sum of the 
frequencies of each instruction amplified by the 
corresponding weight. We are assuming that non basic 
instructions, such as squared roots or activation functions for 
neurons, are either stored in a LUT table or expanded in 
series by using basic instructions. At this abstraction level we 
cannot differentiate cache accesses from memory ones; in the 
following we consider the average weight between the two 
every time we access memory. 

Once the clustering algorithm has partitioned the 
application space, it is natural to associate an activation 
probability ( )∫Ω=

I

dxxpPI  to the generic I-th sub-

classifier. In other words PI denotes the probability that an 
input pattern to be classified belongs to the I-th sub-classifier 
domain of complexity CI (CI accounts both for the 
complexity of the sub-classifier and that of the master 
module.). The complexity can then be expressed as 

( ) ∑
=

=Φ
k

I
IIMC CPC

1

    (2.1) 

where the unknown probability can be estimated by the 
activation frequencies coming from the application profiler. 

TABLE I 
Weights associated with instructions of the classifiers code 
Instruction group Weight Instruction group Weight 

Register Transfer Operation α = 1 
Activation Function 

Evaluation 
α = 52 

Floating Point Sum and Product α = 1 Read/Write Cache α = 10 
Integer Sum and Product α = 1 Read/Write Memory α = 100 

 

Several applications are characterized by time-dependent 
inputs so that two consecutive input patters are related in 
time. If we assume that the transformation from the input 
space to the feature space is related in time then also the 
associated input features will be time related. It is easy to 
extend temporal locality properties of caching mechanisms 
to multiplexed classifiers if we assume that the trajectory 
described by inputs in the feature space is confined in a 
limited region as it happens in automatic controlled 
applications. To test whether temporal locality is interesting 
to an application or not we can generate the ( )τIΤ  curve 
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which provides, for different values of τ , the probability 
that classifier I active at time t is continuously active up to 
time t+τ . Similarly, we can consider sequential locality. 

Locality properties have an immediate positive effect in 
the caching mechanism with an obvious impact in power 
consumption reduction. This positive effect is based on the 
fact that only a sub-classifier is active at a time and that 
properly configured sub-classifiers are most of time 
significantly less complex than the monolithic classifier. An 
automatic procedure for selecting the number of classifiers k 
can be derived by exploiting the ( )τIΤ  curves: since it is our 
interest to maximize temporal locality we can select the 
optimal k as the one maximizing the ensemble locality 

( )∑∑
= =

Τ
k

I

N

I
1 1τ

τ , where N is the number of samples. 

III. EXPLORING THE DESIGN SPACE 
Once the topological structure of the classifier has been 

fixed the next design step requires configuration of each sub-
classifier. This operation requires, for each sub-classifier:  

1) identification of the most suitable classification 
structure (KNN, RBF, FF, SVM,…);  

2) determination of the classification model family/kernel 
within each structure;  

3) configuration/training of each sub-classifier model. 

Obviously, the goal of the design activity is to configure a 
multiplexed classifier MCΦ  solving the 
accuracy/complexity tradeoff. To this end we considered the 
figure of merit (a different approach would involve 
generation of Pareto’s optimal solutions): 

( )
( )

( )
( ) 






Φ
Φ+

Φ
Φ=

Θ∈Φ
M

MC

M

MC
MCM A

A
C
CJ

MC

γmin,  (3.1) 

 

where ( )⋅A  is the accuracy performance function (e.g., 
estimated with cross-validation, k-fold Cross-validation or 
Leave-one-Out). In the following, we consider cross-
validation techniques for ( )⋅A  and the mean squared error 
loss function. 0≥γ  is a weighting term for the accuracy 
and the complexity contributions (in our applications we 
identified a good accuracy/complexity performance with 
γ =0.1). To optimize (3.1) we envisaged a genetic algorithm 
optimization [8] by adopting standard selection, crossover 
and mutation genetic operators. The chromosome structure 
reflects the structure of the multiplexed classifier MCΦ . In 
particular, information related to model hierarchy and model 
family is coded in the chromosome for each of the k sub-
classifiers composing the classifier. As a consequence, the 
chromosome is composed of 2k genes. For each sub-
classifier the first gene codes the model hierarchy, the second 
the model family. KNN, FF, RBF and linear classification 
hierarchies have been considered. Of course, we can decide 

to enlarge the genes allele by adding other classification 
families, i.e., SVM, Bayesian classifiers, etc. The second 
gene codes the value K, the norm in KNN and the number of 
hidden units and activation functions in FF and RBF. 

IV. EXPERIMENTAL RESULTS 
In this section we apply the methodology to three 

industrial applications. Application -I1- refers to a quality 
analysis process for the stainless steel laser cutting industry: 
the goal is to judge during the operational phase the local 
quality of the cut. Physical features are the cutting speed, the 
pressure of the shielding gas and four features associated 
with the sparks produced during the cutting: the spark jet 
presence, the angle of sparks core w.r.t the normal, its 
wideness angle and the angle containing the whole sparks jet. 
Industrial application –I2- is related to a 3d-laser scanner for 
railroad tracks profile analysis [9]. A processing systems 
extracts the track profile from the retrieved images as 
enlightened by a laser beam. A classification core is needed 
to identify, within each image column, the presence of a laser 
reflection.  

The features extracted are minimum and maximum 
intensity of the column, their difference, the standard 
deviation and the maximum value of the convolution of the 
column intensity with a reference gaussian pattern and the 
energy of the derivate of the column intensity. Application –
I3- is related to a quality analysis for the laser spot welding 
in the electronics manufacturing industry [10]. We identified 
that the relevant features to the classification problem 
(good/no-good weld) are the laser pulse energy, time of the 
first significant minimum of the back-reflected laser power 
signal, the time of turnpoint for the temperature sensor and 
the plume delay. After having applied the first three steps of 
the methodology we identify the topological structure and 
the PIs of the sub-classifiers which, for the considered 
benchmarks, are given in table 2. We observe that, 
depending on the particular nature of the application, the 
number of sub-classifiers, their activation probability PI, the 
number of features f and the model nature can be 
significantly different. The table also contains, for sake of 
completeness, the complexity c of each sub-classifier and the 
sub-classifier type, information derived from step 4 of the 
methodology. No linear sub-classifiers have been selected 
here. 

TABLE II 
the MCΦ s;  f = feature number, c = complexity,  

type = classifier type (FF=feedforward, DEG=degenerated),  
PI = activation probability for sub-classifier I 

 k 1,MCΦ
 2,MCΦ

 3,MCΦ
 

I1 3 f: 0 
c: 1 

Type: DEG
P1: 0.25 

f: 5 
c: 1158 

Type: FF 
P2: 0.29 

f:4 
c: 1496 

Type: FF
P3: 0.46 

I2 2 f: 7 
c:752 

Type: FF
P1: 0.14 

f: 5 
c: 616 

Type:FF 
P2: 0.86 - - 

I3 3 f: 3 
c:1496 

Type: FF
P1: 0.37 

f: 4 
c: 1259 

Type:FF 
P2: 0.17 

f:4 
c: 1022 

Type: FF
P3: 0.44 
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The ( )τIΤ  curves are given in figure 1 where each sub-
figure contains the curves associated with all sub-classifiers 
composing a multiplexed classifier.  We represented in a 
continuous line the reference curve τ−k  defined as the one 
whose inputs are independent and identically uniformly 
distributed. Under such hypotheses there is no time-
dependency and temporal locality is absent. The more a 

( )τIΤ  curve is above the reference curve the more the sub-
classifier possesses local temporal property.  

 

The considered industrial applications show good local 
temporality. For instance, module 2,MCΦ  of application I2 
shows a high activation probability from table 2 which 
means that the sub-classifier (P2=0.86) is more active than 
its companion (P1=0.14): in a Least Recently Used cache 
block substitution policy the module will stay in the cache 
with high probability (we also have to remind that sub-
classifiers are in general smaller than the monolithic one). In 
addition, 2,MCΦ  possesses an extremely good temporal 

locality profile from figure 1: the probability that 2,MCΦ  
will be active for all  next 20 input patterns is above 0.8 with 
an obvious impact on cache miss reduction.    
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Figure 1.  The ( )τIΤ  curves for the envisaged applications 

TABLE III 
Comparison of results in complexity and processing time 

 

COMPLEXITY  
TABLE MCΦ

 CΦ
 

Experi-
ment 

Complexity Gain 

)(
)(

MC

C

C
C

Φ
Φ

 

Accuracy  
(% classif. 

error) 

Complexity Accuracy 
(% classif. 

error) 

Complexity 
(type) 

I1 357,04 5 1629 2 581624 (KNN) 
I2 1,99 1 1573 1 3125 (FF) 
I3 3,69 18 1690 20 6236 (FF) 

 
 

PROCESSING TIME TABLE 
MCΦ

 CΦ
 

Experi-
ment 

Execution Gain 

)(
)(

MC

C

T
T

Φ
Φ

 

AMD 
athlon xp 
1.7GHz 

500MB ram 

Intel 
P4 2 GHz 

750BB ram 

AMD 
athlonXp, 
1.7GHz  

500MB ram 

Intel 
P4  

2 GHz 
750BB ram 

 AMD Intel T µs T µs T µs T µs 
I1 348,0 356,8 255 353 88742 125952 
I2 1,8 1,7 241 335 425 585 
I3 3,5 3,5 273 373 956 1319 

 

We can finally consider step 4 of the methodology, 
which requires the creation of the MCΦ  classifiers. The 

reference monolithic classifier CΦ  required in (3.1) has 

been selected among a set of monolithic classifiers with the 
same procedure delineated to create the MCΦ  ones. The 
initial population required by GAs was composed of 20 
randomly initialized MCΦ ; the genetic algorithms procedure 
evolved for 100 generations. Results are shown in table 3. 

Our experiments show that the methodology can produce 
multiplexed classifiers whose accuracy is comparable to the 
monolithic one but with a significant reduction in 
complexity. In some cases the complexity gain, which 
expresses how many times the monolithic classifier is more 
complex than the multiplexed one, is very high. Finally, we 
estimated the execution time per pattern presentation of both 
monolithic and multiplexed classifiers on two processors; the 
presence of not removable operating system processes was 
averaged over 100 presentations of the whole data set for 
each benchmark. We experienced that the gain in execution 
time is comparable, within fluctuations associated with 
uncontrollable OS processes (Windows 2000pro), with the 
estimated gain in complexity given in table 3 hence showing 
the effectiveness of the estimates (on which the genetic 
optimisation phase is based). 

CONCLUSIONS 
 

The paper presents an application level methodology for 
designing classification cores characterised by a reduced 
complexity and improved execution time by partitioning the 
classification space in sub-domains ruled by dedicated sub-
classifiers. The multiplexed nature of the classifier design 
allows us to activate only a sub-classifier at a time while 
others are switched off with an immediate reduction in 
power consumption in applications experiencing temporal 
locality. The presence of the partitioning property, in 
addition to locality ones, reduces cache misses as well as 
computational complexity with also a gain in execution time.   
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