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Wide attention was recently given to the problem of fault-tolerance in
neural networks; while most authors dealt with aspects related to specific
VLSI implementations, attention was also given to the intrinsic capacity of
survival to faults characterizing the neural modes. The present paper tackles
this second theme, considering in particular multilayered feed forward nets.
One of the main goals is to identify the real influence of faults on the neural
computation in order to show that neural paradigms cannot be considered
intrinsically fault tolerant (i.e., able to survive to faults, even several of the
most common and simple ones). A high abstraction level (corresponding to
the neural graphs) is taken as the basis of the study and a corresponding
error model is introduced. The effects of such errors induced by faults are
analytically derived to verify the probability of intrinsic masking in the final
neural outputs. Then, conditions allowing for complete compensation of the
errors induced by faults through weight adjustment are evaluated to test the
masking abilities of the network. The designer of a neural architecture should
perform such a mathematical analysis to check the actual fault-tolerance
features of his or her system. Unfortunately, this involves a very high com-
putational overhead. As a cost-effective alternative for the designer, the use of
a behavioral simulation is proposed for a quantitative evaluation of the error
effect on the neural computation. Repeated learning (i.e., a new application
of the learning procedure on the faulty network) is then experimented to
induce error masking. Experimental results prove that even single errors
affect the computation in a relevant way and that weight redistribution is not
able to induce complete masking after a fault occurred, i.e., the network can-
not be considered per se intrinsically fault tolerant and it is not possible to
rely on learning only in order to achieve complete masking abilities. Mapping
criteria of physical faults onto the abstract errors are finally examined to
show the usability of the proposed analysis in evaluating the actual robust-
ness of a neural networks' implementation and in identifying the critical areas
where architectural redundancy should be introduced to achieve fault
tolerance. � 2001 Academic Press
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1. INTRODUCTION

Artificial neural networks (ANNs) offer an attractive solution for complex non-
linear problems in many critical application areas (signal and image processing,
real-time control, etc.) when an algorithmic approach cannot be easily defined. On
the other hand, advances in integration technologies and architectural design now
allow implementations at reasonable costs: in fact, even commercial systems are by
now available to large classes of users.

The possibility of VLSI or WSI implementation of ANNs and their application
in mission-critical areas (e.g., in aerospace environments and in critical control
systems) makes defect and fault tolerance such an important issue in system design
that it should be taken into account even from the initial design stages at the
behavioral level. Since computation and information are not localized in the ANN
but are holographically distributed, an error in a single neuron or in a synaptic
weight affects the whole computation, although��in general��it does not completely
destroy any part of it. As a consequence, the concept of error confinement, basic to
most conventional fault-tolerance policies, cannot be applied in its usual way to
limit the error propagation [1]: approaches tailored to the neural paradigms must
therefore be envisioned in order to achieve the best performance at limited costs.

Several authors dealt with different aspects of defect and fault tolerance in rela-
tion to specific implementations of neural nets. In [2], behavioral fault models are
defined with reference to multilayered nets implemented by analog systems, and the
impact of the physical faults on the operation of the single device is examined at
various abstraction levels. In [3], a relationship is identified between the physical
defects and failures and the maximum size of the device for a given analog
implementation approach. In [4], a digital array architecture supporting the map-
ping of a number of neural nets is envisioned: solutions for defect and fault
tolerance are discussed, with reference to the supporting architecture (and to the
mapping technique) rather than to the characteristics of the neural nets mapped
onto it. In [5, 6], testing is treated at the behavioral level with specific reference to
neural paradigms in order to verify the testability of such computing structures and
to generate efficiently the related test procedures for end-of-production and offline
verification of digital implementations. In [7�12], concurrent error detection
techniques at architectural and functional levels were proposed to certify the
correctness of each individual result and, possibly, correct the errors.

On the other hand, several studies were also performed to introduce fault
tolerance directly into the neural paradigms, independent from their implementa-
tion. In [13, 14], the effects of errors in the behavior of neural operators on the
whole neural computation were analyzed at the behavioral level by deriving the
probability that neurons' and networks' outputs are correct but without any
reference both to a general methodology that could be used by a designer in the
practice and to the relationships between faults and errors. Besides, these techni-
ques are able neither to certify the actual correctness of the individual network
result nor to forecast the exhaustion of the intrinsic error masking ability, allowing
the use of possibly-erroneous results. In [15, 16], approaches to increase the error
masking ability were presented by modifying the learning procedure in order to
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force a higher insensitivity to errors; this can be achieved by forcing the final work-
ing points of the neurons toward the saturation regions of the nonlinear activation
functions, so that even a large variation of the weighted summation affects the
neuron output either marginally or not at all. This technique can be seen as some-
how corresponding to the information redundancy approach for classical digital
networks [17]. However, this kind of masking ability does not cover many relevant
error classes or is not present in several neural paradigms. The error confinement
requirement was relaxed by requiring simply that the information provided by a
faulty unit be kept consistent with a given error assumption (e.g., requiring that the
output of a neuron be kept fixed to a given value as soon as the neuron is found
to be faulty). In [18], correlation between generalization and fault tolerance was
empirically studied for the linear programming algorithm by injecting errors during
learning. In [19], a very interesting analysis of the fault-tolerance characteristics in
the backpropagation model was presented. The generalization ability is exploited in
a highly efficient way to enhance the intrinsic masking and to incorporate��in the
network configuration��the ability to deal with a given amount of error due to
possible faults; this is achieved during learning by adopting an error function which
is a linear combination of the criterion measuring the difference between the faulty
and the fault-free networks and the traditional error function of the back-propaga-
tion algorithm. In [20], partitioning and distribution of a configured ANN among
a larger number of neurons is shown to limit the individual neuron's contribution
to the final result so that the fault-free neurons are supposed to be able to generate
the correct (or near correct) final result; this requires so many neurons that any
hardware implementation becomes infeasible. It is important to point out that all
the above techniques assume the errors to be small: unfortunately, this is not
generally true, especially for digital implementations [21].

Instead of creating robust architectures without any concern to the specific kind
of computation performed or robust neural paradigm without reference to the
underlying architecture, an alternative comprehensive approach consists of:

�� analyzing the intrinsic robustness (whether and within which bounds) of
the neural paradigm for the given behavioral error model (related to the abstract
neural model), by evaluating the impact of such errors on the neural computation
in a technology-independent way,

�� mapping the actual physical faults onto the behavioral model for the envi-
sioned implementation architecture and technology, i.e., transforming the physical
fault probabilistic distribution into the implementation-specific probabilistic dis-
tribution of the behavioral errors,

�� and evaluating the implementation's robustness by identifying the critical
architectural areas (if any) with respect to the implementation-specific error dis-
tribution; in such areas ad-hoc fault-tolerance policies (e.g., [4, 7�12]) must be
introduced at the architectural level to provide the desired level of fault tolerance.

The present paper adopts such an approach to introduce a structured design
methodology, which takes into account both the partial ability of intrinsic masking
of the neural paradigms and the need of architectural support to overcome the
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intrinsic inability of complete error masking. By exploiting both the intrinsic fault
tolerance ability of the neural paradigms and the necessary architectural support
enhancing such an ability, it is possible to achieve an implementation having high
fault tolerance at limited costs. Architectural features are in fact added only when
the neural paradigm is not sufficient to achieve the desired protection. Some
preliminary ideas were presented in [21, 22].

The basic goal of the paper is to show that the neural networks cannot be con-
sidered completely fault tolerant by relying on the intrinsic (even if enhanced) mask-
ing ability only. The analysis method followed to such a purpose can be adopted
as a guideline by the designer in order to identify the critical parts of his or her
neural implementation. The designer's attention will then be focused on such areas
as introducing the suitable solutions for architectural-level fault tolerance.

As an example, the multilayered back-propagation networks is chosen in this
paper, according to the classical, completely-connected model. An initially error-
free network is assumed, having completed a nominal supervised learning phase on
the required set of input pattern classes when the null-error condition is reached
(being this is consistent with the behavioral approach, by which only the system's
response at its outputs can be observed and evaluated).

The behavioral error model is first introduced in Section 2 by taking into account
both single and multiple errors due to faults. A theoretical analysis of the errors'
influence on the neural computation is then presented. While most of our treatment
is performed on the single-error assumption, the extension to multiple errors is
straightforward. Quantitative evaluations cannot be easily obtained in general
terms, depending not only on the errors' magnitude but also on the characteristics
of the nonlinear evaluation functions. To overcome this limitation, extensive
simulations were carried out for a set of sample networks with varying numbers of
neurons and different distributions of neurons among layers, all designed to operate
on the same set of input classes. Results of such simulations, presented in Section
4, prove that even single errors affect the computation in a relevant way, i.e., in
general the neural paradigms cannot be considered per se intrinsically completely
fault tolerant.

Having determined the effects induced by errors, the second step toward assess-
ment of fault-tolerance consists of verifying whether it is possible to overcome the
presence of errors by modifying the variable parameters present in the network (i.e.,
the synaptic weights), in other words, if weight redistribution (i.e., learning) alone
is able to provide complete masking ability. To this end, a simple form of error con-
finement can be preliminarily adopted (e.g., by setting to zero a faulty synaptic
weight or by setting to a fixed and known value the output of the fault-affected
neuron). Then, two alternative approaches can be explored to grant that the devia-
tion of the networks' outputs with respect to the expected ones is either null or kept
within predetermined bounds. In the first, simplest, case, it can be requested that
the inputs to the evaluation functions of all neurons in the layer immediately
following the fault be kept identical to the expected ones in the error-free net. If a
solution of this equation's system exists, it is possible to guarantee that learning in
the presence of the faulty component can provide error masking (actually, direct
application of the solution's weights obtains the same result). While the analytical
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relations thus derived are relatively simple (nonlinearities are excluded), the sim-
plification of the problem is such that arguably many cases in which fault-tolerance
could still be achieved would not be solved in this way. In the most general case,
propagation of errors and of weight variations through all layers following the fault
should be taken into account; nonlinearities make this approach extremely com-
plex, although in the assumption of small error-induced deviations the system could
be linearized.

The analytical conditions which allow us to state whether a given network,
designed to operate on a given set of input classes, can be made to operate correctly
even in the presence of one (or more) errors are discussed in Section 3. Actually,
the mathematical complexity of the relations obtained is such that a numerical solu-
tion would not be feasible, apart from very simple networks; weight modification
and redistribution can be achieved by repeating the learning phase on the error-
affected network and (obviously) with the nominal set of input classes. Simulation
results obtained by this relearning technique are presented in Section 4. They show
that the presence of faults is not completely masked by the characteristics of the
neural paradigm alone (even if with enhanced fault tolerance ability): some residue
error is still present and, in the general case, is not negligible, even if the influence
on the network's outputs is reduced with respect to the situation before weight
adjustment.

After having identified until which point learning can be exploited to introduce
effectively error masking, the robustness evaluation for the envisioned implementa-
tion must be based on mapping the physical faults affecting specific implementa-
tions onto the behavioral errors of the abstract model. Examples of this analysis are
presented in Section 5. This allows the designer to transform the physical fault
probability distribution into the actual probability distribution of the behavioral
errors. In turn, this proved information about the criticality of the fault classes
whenever they are not intrinsically masked by the neural computation, they fre-
quently occur, and they affect the neural results in a nonnegligible way. Exploita-
tion of all this information for enhancing the neural implementation design is dis-
cussed in Section 6: the designer can in fact identify the critical components which
are not protected enough by the intrinsic masking of the neural computation and
adopt the suitable architectural strategies to complete the protection.

2. THE ERROR MODEL AND ITS INFLUENCE ON
THE NEURAL COMPUTATION

The network model adopted in this paper is the classical multilayered perceptron
proposed by Rosenblatt (see [23]), in which the operation of any single neuron nk

is given by:

xk= f \:
j

wkj xj&%k+ . (1)

The individual neuron can thus be modeled as in Fig. 1, where each synapsis con-
necting neuron j of layer i&1 with neuron k in layer i is associated with the related
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FIG. 1. Neuron's model.

synaptic weight wi, i&1
kj and the operator multiplying such a weight by signal xi&1

j

produced by neuron ni&1
j . The summation over all input signals to ni

k and the sub-
sequent neural nonlinear evaluation function are represented by individual corre-
sponding operators associated with neuron ni

k .
Upon this behavioral neuron model, a behavioral error model can be defined

depending only on the behavior of the neuron itself and independent of technologi-
cal implementations. More specifically, in the behavioral neuron model, the follow-
ing errors may occur:

a. unexpected value of input signal xi&1
j : in a physical implementation, this

can be due to a fault internal to ni&1
j , to faulty interconnections, or even to external

noise affecting the system;

b. errors affecting the synaptic weight wi, i&1
kj or the associated multiplication

by xi&1
j : in the absence of any implementation detail, they are to be considered as

indistinguishable;

c. errors affecting the summation inside the neuron;

d. errors affecting the nonlinear evaluation function; actually, these errors
lead to the creation of an unexpected value on xi

k and thus are equivalent to errors
of the class a.

Let us now consider the sensitivity of the neural net to such various errors.
Generality leads us to take into account continuous signals, and, in particular, con-
tinuous nonlinear evaluation functions; the particular case of two-state signals and
of step functions can be derived easily.

The effects of errors modifying the input to the evaluation function of neuron nj

are first analyzed. As a reference, the two most meaningful instances of the evalua-
tion function (namely, the sigmoid and the step function) are considered.

In the first case, the sigmoid for neuron nk can be expressed as

fk(sk)=
1&esk

1+e&sk
, (2)
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FIG. 2. Local error for the sigmoid function.

where sk=�j wkjxj&%k . The injection of an error = in sk produces an error in the
output given by:

ek(sk , =)= fk(sk+=)& fk(sk)=2
e&sk(1&e2=)

(1+e&sk)(1+e&sk&=)
. (3)

The function is represented by the surface in Fig. 2, where varying values of the
error = and of the input summation sk are considered. If a step function is taken
into account, instead of the sigmoid, the sensitivity of the neuron's output is
represented by the surface in Fig. 3.

FIG. 3. Local error for the step function.

24 VINCENZO PIURI



If the error classes defined above are examined, the following remarks hold:

1. for errors in classes a and b, the influence on the output of neuron n i
k

depends on the displacement of the operation point on the neuron's evaluation
function as a consequence of the error; in fact, due to nonlinearity of such a func-
tion, the error can be filtered and an actual error masking is achieved at no cost.

2. errors in class c may lead to wider displacement of the neuron's operation
point and, thus, are more likely to affect the neuron's output value;

3. errors in class d are immediately visible on the neuron's output and no
immediate error masking ensues. While this is obviously critical for neurons in the
output layer, for the other layers Case 1 will be again considered, with respect to
layer i+1, where the error affects the inputs of all neurons.

The last case above might lead one to consider, in the following, only the effects of
an error on a neuron's output, since ultimately even the other errors, whenever they
are not masked, result in this same behavior. At any rate, it is interesting to analyze
the extent to which a neuron's behavior is affected by errors on a synapsis (be it
the signal transmission, the weight storage, or the weight multiplication which is
affected). The analysis is initially limited to the effects of a single error; extension
to multiple errors will then be outlined.

In the layered net, assume an error of any of the previous classes affecting neuron
ni

j , i.e., the jth neuron of layer i. The error affects its output x i
j ; denote the variation

of the output value with respect to the expected one as =. As a consequence, the
summation s i+1

k computed by any neuron n i+1
k belonging to layer i+1 will be

affected by an error. The analysis is first restricted to the effects between the two
adjacent layers.

The modified value of s i+1
k is now expressed by

s� i+1
k =:

h

w i+1, i
k, h x i

h&% i+1
k &w i+1, i

k, j x i
j+w i+1, i

k, j x� i
j , (4)

where x i
j is the expected value of the output of n i

j in the absence of error, while x� i
j

is the value of the same signal in the presence of an error (i.e., x� i
j=x i

j+=). It is then

s� i+1
k =s i+1

k +w i+1, i
k, j =.

The output of any neuron n i+1
k in layer i+1 will in turn be affected by an error

e i+1
k =x� i+1

k &x i+1
k = f i+1

k (s i+1
k +w i+1, i

k, j =)& f i+1
k (s i+1

k ). (5)

Referring to Cases 1 and 2 above, the instances in which error masking may
occur can now be analyzed. Two alternative cases can be considered:

A. the value of the input summation s i+1
k is such that the operation point of

ni+1
k falls well within the saturation region of the evaluation function;

B. the value of s i+1
k is such that the operation point falls in the transition

region of the sigmoid.
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In Case A, denote by +k the maximum acceptable absolute value for the output
error in the saturation region, i.e., the value such that the neuron's output can be
taken as equivalent to the nominal one. Then, denote by s i+1, +

k the limit value of
si+1

k such that the neuron's output value will fall within acceptable bounds;
obviously, only displacements of the operation point that lead out of the saturation
region should be considered. Given the expression of the sigmoid function, it is

s i+1, +
k = g i+1

k (1&+k),

where g i+1
k ( } ) denotes the inverse function of f i+1

k ( } ).
Then error masking occurs whenever the operation point remains in the satura-

tion region, i.e.,

s� i+1
k �s i+1, +

k

or

s� i+1
k �&s i+1, +

k .

Should a step function be used instead of the sigmoid, s i+1, +
k obviously becomes

null for any value of + such that 0�+�1. Whenever these bounds are satisfied, the
output error is null.

In Case B, a left and a right bound must be defined for the operation point such
that the corresponding output value falls within acceptable, predefined limits. Let
two such bounds be

s i+1, +, l
k =g i+1

k ( f i+1
k (s i+1

k )&+k)

s i+1, +, r
k =g i+1

k ( f i+1
k (s i+1

k )++k);

then, error masking is granted whenever it is:

s i+1, +, l
k �s� i+1

k �s i+1, +, r
k .

It could be deduced that, provided the operation points of all neurons were brought
well within the saturation region and the errors affecting the input summation did
not lead to displacements larger than the bounds defined above, errors (even
multiple ones) could be masked by the intrinsic network's operation (see also
[17]). Still, it must be noticed that such policy involves:

1. higher learning time,

2. higher precision in the definition of weights (independent of the implemen-
tation technology adopted),

3. higher recall time.
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Thus, if reference is made to the classical fault-tolerance approaches, both time and
information redundancy are required.

Moreover, the above conditions for error masking can actually be granted in a
statistical way; it is impossible to grant that any error will keep the operation point
within the predefined bounds.

If the error was always null, the neural paradigm should be completely intrinsi-
cally fault tolerant. By analyzing the above constraints for the envisioned applica-
tion, the designer could exactly verify if his or her approach is completely fault
tolerant or, at least, which is the probability that the possible behavioral errors will
be masked. In other words, the designer can evaluate his or her confidence in rely-
ing only on the intrinsic ability of the neural computation in order to achieve fault
tolerance, independent from both possible learning enhancement and any specific
architectural strategy.

3. CONDITIONS FOR FAULT TOLERANCE THROUGH
WEIGHT MODIFICATION

To verify from a theoretical point of view whether fault tolerance can be achieved
without introducing any structural redundancy in the neural graph (i.e., for
example, by enhancing the learning procedure), it is necessary to examine the
possibility of obtaining the correct outputs from the fault-stricken network through
a suitable redistribution of weights devised to operate on the same set of input
classes initially specified for the fault-free network. Permanent, fixed-value errors
are assumed; i.e., the error is assumed to remain identical for all input patterns to
the stricken neuron or at least for all patterns in each given class. The effects of
any error (either within a given neuron or on a synapsis leading to it) are con-
sidered to be represented simply by the deviation of the neuron's outputs from the
expected value, given the specific set of inputs. This allows us to carry on the
following elaboration independent of the particular type of error. Initially, the
single-error assumption is adopted: extension to multiple errors will be outlined at
the end.

A first, simplified fault-tolerance requirement can be introduced as follows:
assuming the presence of a faulty neuron n i

j in layer i, we want to verify whether
its presence can be completely masked at the outputs of all neurons of layer i+1
by properly updating the interconnection weights between neurons of layer i and
neurons of layer i+1. To further simplify operations, a simple form of error con-
finement is introduced; namely, null weights are set on all the synapses leading from
the stricken neuron (fault confinement is an usual prerequisite of fault-tolerance
policies). In other words, the interconnection weights between the two adjacent
layers must be modified to satisfy the requirement that the error e i+1

k at the output
of any neuron n i+1

k of layer i+1 be zero for any pattern belonging to the input
classes specified for the given network. (It may be noticed here that this policy
implicitly does not apply whenever the stricken neuron is in the output layer; this
is consistent with the semantics of such a neuron's operation, since the output layer
actually provides the coding of the classification performed.)
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Assume that s~ i+1
k is the new value of the input summation after any weight

modification 2w i+1, i
k, h between layer i and layer i+1, leading to w~ i+1, i

k, h . It is

s~ i+1
k =:

h

w~ i+1, i
k, h x i

h&% i+1
k

=:
h

w i+1, i
k, h x i

h&% i+1
k +:

h

2w i+1, i
k, h x i

h

=si+1
k +:

h

2w i+1, i
k, h x i

h , (6)

where we consider

2w i+1, i
k, h ={&w i+1, i

k, h ,
| i+1, i

k, h ,
for h= j and \k in layer i+1
for h{ j and \k in layer i+1

(7)

and | i+1, i
k, h are the unknown modifications of weights required to achieve error

masking.
It is immediately stated that error masking through weight updating can cer-

tainly be achieved if the values of the input summations s~ i+1
k obtained by Eq. (6)

are identical to the values of the input summations s i+1
k in the absence of errors.

In this case, in fact, the outputs of the neurons in layer i+1 will be identical to the
expected ones independent of the particular position of the operation point or on
the shape of the nonlinear evaluation function. Thus, it must be

s~ i+1
k &s i+1

k =:
h

2w i+1, i
k, h x i

h=0 (8)

which can be rewritten for each neuron in layer i+1 by highlighting the unknown
quantities, as:

:
h{ j

| i+1, i
k, h x i

h=w i+1, i
k, j x i

j . (9)

Now let H be the number of neurons in layer i and K the number of neurons in
layer i+1; Eq. (9) defines a linear system of K equations in the variables | i+1, i

k, h .
The number of variables is (H&1)_K, since there are H_K interconnection
weights between layers i and i+1, but K weights are fixed by the rule of Eq. (7).
The system is linear since the x i

h do not depend upon the | i+1, i
k, h . Besides, since no

modification is envisioned for the synaptic weights in layers preceding layer i, for
each given input pattern presented the values of the x i

h , as well as that of w i+1, i
k, j x i

j ,
may be considered to be constant values.

The linear system defined by Eq. (9) for each given input pattern may be formally
compacted by using a matrix description. Let 0=[| i+1, i

k, h ] (with k # [1, K], h #
[1, H]&[ j]) be the matrix of unknown weight modifications. The row vector ;
is defined by cascading the rows 0k of 0, i.e., ;=[01 | 02 | } } } | 0K]. The
column vector C is given by the constant vector C=[w i+1, i

k, j x i
j].
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Finally, the coefficient matrix 8 is defined as a block-diagonal matrix, where
each nonnull block on the main diagonal is equal to the row vector Xi=[x i

h] of
the output signal generated by the neurons of layer i in the absence of errors. It has
K rows and (H&1)_K columns. It can be proved that the rows of 8 are linearly
independent, since no linear combination of any set of (k&1) rows can generate the
remaining row. This can be easily derived from properties of linear algebra by
assuming that at least one x i

h is not null.
From the previous definitions, the linear system of Eq. (9) is thus given by

8 } ;T=C, (10)

where ;T is the transpose of ;.
Equation (10) has a unique solution for a given input pattern iff 8 is a square

matrix and may be inverted, i.e., K=(H&1) K (namely, H=2, K>0) and
det(8){0. In such a case, the weight modifications that confine the error between
the two adjacent layers are given by ;T=8&1C. Note that, when H=2, matrix 8
becomes a diagonal matrix and, thus, det(8){0 iff x i

h {0, with h{ j (i.e., the
output signal of the error-free neuron is not null in the absence of errors). The
probability p that a solution exists is given by p= p(x i

h {0 | h{ j).
If 8 is a rectangular matrix, the number of columns is larger than that of rows

(H>2 and K>0), and an infinite number of solutions occurs. In fact, if a square
submatrix 9 (having rank K) of 8 can be found to be invertable, an infinity of
solutions of order (H&2) K exists. This means that, for the given input pattern, the
value of (H&2) K weights can be arbitrarily chosen. Due to the characteristics of
matrix 8, it is possible to show that the probability p that a solution exists is the
probability that at least one x i

h (with h{ j) is not null; i.e., p=1&6h{ jp(s i
h=0),

by assuming that x i
h are mutually independent.

Extension of Eq. (10) to the whole set of P input pattern classes may be achieved
by considering a set of Eq. (10) for each class p (obviously, the values in the con-
stant vector will be different for each pattern as will the signals output from layer
i). This leads to

8� } ;T=C� , (11)

where 8� T=[81
T | 82

T | } } } | 8P
T], C� T=[C1

T | C2
T | } } } | CP

T], and 8p and Cp

are matrices 8 and C (defined above) for class p.
Equation (11) defines a linear system of PK equations in (H&1) K variables: its

solution (if it exists) gives the weight modifications which guarantee complete
tolerance to the injected error for all input classes. If no solution exists, no learning
procedure��even if leading to an enhanced masking ability��will be able to com-
pletely grant fault tolerance by relying on the intrinsic masking ability only; as a
consequence, the designer should carefully consider the opportunity of adopting
architectural strategies for fault tolerance with respect to the specific requirements
of the envisioned application. In this system, some rows may be a linear combina-
tion of other rows, so that the actual number of equations that should be
simultaneously solved will be lower than PK. It can be proved that, if two rows are
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found that are mutually linearly dependent, linear dependency can be found
between 2P rows. Should the determinant of the system be null, a possible alter-
native in order to reach a solution could be to move a small distance to the center
of each class, thus slightly modifying the parameters of the system without affecting
in a relevant way the classification capacity.

Extension to the instance of multiple errors is straightforward; if the errors are
all located in one layer, the condition stated by Eq. (7) is applied for all stricken
neurons (this obviously reduces the number of variables). Otherwise, the set of
equations will have to be determined independently for each pair of layers between
which errors are injected, keeping in mind that stricken neurons cannot actively
participate in the weight updating operations.

If the previous constraints upon 8 are not satisfied, no weight modification can
be found for the given input patterns to grant error masking already at the inputs
of the evaluation functions in layer i+1. Actually, this does not immediately
exclude the possibility of error masking through a more extended propagation of
weight updating through all layers from i+1 to the output one. An attempt at
obtaining such a satisfactory modified weight distribution should be made; still, it
is quite obvious that an exact solution would be very hard to determine, due to the
presence of nonlinear functions. An approximate solution will be therefore con-
sidered by first introducing constraints that will make the problem manageable.

The analysis is restricted to the instance of errors whose effects are sufficiently
limited to keep the operation point (for all neurons in the layers following the
stricken neuron) in a small interval around its nominal position on the nonlinear
evaluation function. As already stated, continuous, derivable functions are envi-
sioned; it is then acceptable to substitute, within the limited interval now defined,
the nonlinear function with its linearization, i.e., the tangent in the nominal opera-
tion point. Assuming again an error = in the output x i

j of neuron n i
j , the error at

the output of any neuron n i+1
k is now expressed as:
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The above holds for the individual pattern corresponding to the operation point
taken into account; thus, Eq. (12) must be repeated for all pattern classes. Unless
layer i+1 is the output one, Eq. (12) must be extended for all subsequent layers
and for each m>i+1
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is obtained where x� m
k denote the erroneous values of the outputs produced by each

neuron in layer m. A more compact expression of (13), making use of vector
notation, is

Em &F$m |SWm, m&1Em&1 , (14)

where Em is the vector of output errors at layer m, S is the vector of the summation
inputs, F$ is the vector of derivatives of F in S, and Wm&1, m is the weight matrix
between the adjacent layers. It should be noted that Eq. (13) is a recurrent equation
whose solution may be achieved by iterative substitutions and involves a relevant
computational complexity.

Having thus determined the error propagation through the system, it is necessary
to attempt variations of weights throughout all layers (backward from the output
layer up to, and including, layer i+1) to set an upper bound on the final error
produced by the net. To this purpose, two alternative aims are considered: either
setting such error to 0 or else minimizing the mean square of the error itself.

Variation of the weights is achieved by considering each weight w i+1, i
k, h to be

modified by 2w i+1, i
k, h ; thus, the input summation to the evaluation function for each

neuron in layer i+1 is:

s~ i+1
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As a consequence, the variation of each neuron's output value is
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which (assuming small errors) can be approximated as:
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Equation (17) must now be extended to any layer subsequent to i+1; in this phase,
second-order differences would appear that are here assumed negligible by com-
parison with the other terms. Thus, finally, the variation of each neuron's output in
any layer m, m>i+1, is evaluated as:
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Using vector notation, Eq. (18) can be written as

2Xm &F$m |S (Wm, m&1 2Xm&1+2Wm, m&1Xm&1), (19)

where 2Xm is the vector of output variations due to the injected errors and to the
weight modifications, 2Wm, m&1 is the matrix of weight modifications between the
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two adjacent layers, and Xm&1 is the vector of outputs generated by neurons
belonging to layer m&1. Again, Eq. (18) concerns just one pattern and it should
be extended��as in the previous case��to all pattern classes taken into account.

By applying Definition (7), the variables | of the unknown modifications of
weights are introduced.

By iterative substitution in the recurrent equation thus obtained, the following
system of linear equations can be reached.

2XM=C 2Xj+ :
M

m=i+1

2Wm, m&1 Dm , (20)

where C and D are constant vectors depending on the input classes. The injected
error is completely masked at the final outputs of the neural net if 2XM=0. This
leads us to rewrite Eq. (20) to achieve a linear system similar to Eq. (11). Solutions,
constraints, and remarks on the use of enhancing fault tolerance are thus similar to
those discussed above for such a system. Note that if no solution exists, classical
dynamic programming techniques (e.g., see [24]) can be applied to identify a set
of values for the variables | that minimize the objective function ,=min(&2XM &).
This will be the best possible masking achievable by weight redistribution and, in
turn, by a learning procedure aiming to enhance the intrinsic masking ability of the
neural computation; however, complete masking is not provided and the designer
should consider the necessity of architectural supports to fault tolerance.

Should the linearization adopted until now (i.e., the small error assumption lead-
ing to Eq. (17) and the subsequent analysis) be incompatible with the actual varia-
tion of operation points (as verified a posteriori on the network with the modified
weight values), Eq. (20) should have to be treated not as a linear recurrent equation
but as a nonlinear equation��with the obvious increase in difficulty. Unfortunately,
this case often occurs in digital implementations, making the theoretical feasibility
analysis for enhancing the intrinsic masking ability by weight adjustment imprac-
tical.

Extension to the case of multiple errors is simple in the assumption that their
global effect is still limited enough to allow linearization around the nominal opera-
tion point for each fault-free neuron. In this case, effects of the individual errors are
simply superimposed to reach the expression of the complete case.

4. SIMULATIONS AND EXPERIMENTAL RESULTS

The analytical treatment presented in the previous sections allows us to under-
stand the influence and the relevance of behavioral errors on the neural computa-
tion as well as the mathematical conditions that have to be satisfied in order to
grant fault tolerance without introducing structural redundancy in the architecture
implementing the neural network. In other words, we evaluated the conditions for
which fault tolerance can be achieved by using a suitable learning technique (e.g.,
[19]), since the weight adjustment can be viewed as a learning phase, during which
the nominal training pattern classes are used to obtain correct responses even in the
presence of errors due to faults within the network. While this kind of learning
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involves a time overhead related to the additional training patterns due to the
presence of errors, it cannot be actually considered a time-redundancy policy, since
the time overhead is introduced only during weight configuration and does not
influence the subsequent recall phase.

The conclusions reached in Section 3, even though interesting in that they allow
us to state that fault tolerance can be reached under very specific constraints but it
is not a general property of the neural paradigm, suggest that use of mathematical
equations to evaluate both these conditions and the modified weights would be
extremely time-consuming.

Therefore, a simulation-based analysis is performed in this section to show a
more practical way that can be adopted by the designer in order to verify the fault-
tolerance characteristics of his or her network, the possibility of intrinsic error
masking in the presence of faults, and the possibility of enhancing such an ability
by adopting a suitable weight adjustment technique (either a priori during learning
[19] or after fault occurrence by relearning the desired behavior in the presence of
a faulty architecture). It is worth noting that simulation allows also for a quan-
titative evaluation of the masking ability. Simulations were carried out over several
networks, all trained over the same set of input patterns and therefore characterized
by an identical output layer, but otherwise differing for the number of neurons in
the hidden layer(s), the number of layers, and the distribution of neurons among
the various hidden layers. This allows us to evaluate the influence of such structural
characteristics on the network's behavior in the presence of errors.

The network performances are defined with reference to the capacity of effecting
a classification of randomly generated input patterns with respect to a given set of
classes. In turn, to grant the greatest generality to the experiment, each class is
characterized by a central representative and by a set of related patterns generated
by random (white) noise within a given (even reasonably large) range. An example
of the tessellation of the space of classified patterns is given in Fig. 4 for a set of six
classes (the one used for the presented experiments).

The multilayered nets devised to classify such patterns all have at least one��and
possibly more��hidden layer. Obviously, all nets have as many neurons in the out-
put layer as the number of classes. Among the different nets, a minimum-complexity
network (i.e., a network capable of granting correct classification over the given
input set but such that nets with less neurons could not achieve such a classifica-
tion) is created in an experimental way by applying any neural structure minimiza-
tion technique [25]. The evaluation function adopted is a sigmoid for all but the
output layers; a step function is adopted for the output layer to achieve a binary
output value. All other output signals have continuous values ranging between &1
and +1.

A random distribution of weight values, ranging between &1 and +1, is initially
provided over the untrained network; the first learning (performed over the fault-
free network, prior to error injection) leads to the achievement of the proper weight
distribution related to the given pattern classes. The final values of weights may be
arbitrary real numbers. The learning algorithm is a classical back-propagation one
[23]: different values have been used for the algorithm parameters to check the
sensitivity of the evaluations to the characteristics of the algorithm.
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FIG. 4. Classification space.

Two separate error instances were considered that effectively can be seen to cover
the error classes introduced in Section 2. The first instance concerns errors affecting
individual input signals, individual synaptic weights, or weight-signal multipliers.
Both single and multiple errors will be taken into account (note that this could
include also some errors of the summation unit). The second instance concerns
errors affecting the evaluation function (again, relevant errors affecting the summa-
tion can be experimentally seen as creating similar effects).

Two alternative policies have been adopted for defining the value of the errors to be
injected. The first refers to an additive error summing to the correct value found on a
synapsis or on the output of a given neuron; the second one consists in a fixed value
stuck-at a synapsis or on the output of a neuron, whatever the ideal value of such
output. These two instances, while coherent with the error model defined in the
second section, are compatible with fault instances in silicon implementations as well.
Simulations have given practically identical results for both error types; as a conse-
quence, only the set of results derived from the first alternative will be presented here.

Refer first to a simulation of the net's behavior in the presence of a single error.
Nets with three layers (Case a) and with five layers (Case b) are analyzed. The
number of pattern classes is six for all instances. For Case a, the behavior of a large
number of nets is examined with varying numbers of neurons (starting from the
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lowest one, as defined above, to a number approximately double that) and with
different distributions of such neurons among the three layers, so as to account for
different amounts of synaptic weight memory. Different structures (both with
respect to the number and to the distributions of neurons) were examined also for
the five-layer nets, although (due to the complexity of the experiment) the analysis
was not as exhaustive as in the three-layer case.

A further element of discussion is the position of the error-stricken neuron within
the net; thus, for example, when a three-layer net is considered, it can be seen that
while the position of the fault within a layer is not relevant (as it is self-evident),
the particular layer in which the fault is positioned is relevant to the value of the
final classification error.

Effects of synaptic errors are examined initially; intuitively (and also from the
mathematical analysis performed above), such errors are expected to have a
relatively small influence on the network's behavior, but are possibly nonnull. In
Fig. 5, the effects of a single synaptic error are represented for a number of three-
layered nets, starting from the minimum-complexity one and going toward increas-
ing numbers of neurons in the input and hidden layers; the two axes in the horizon-
tal plane show the number of neurons in the input (layer 1) and in the hidden
(layer 2) layers, respectively, while the quote is the observed maximum error.
Figure 5a gives the residue classification error in the absence of faults, assuming
that learning is continued until no improvement is achieved and trying to reach
total classification capacity; Figure 5b gives the classification error due to a fault in
a single synapsis randomly located. Identical examples have been taken into

FIG. 5. Error due to faulty synapsis: after initial learning (a), with one fault after fault injection (b),
with multiple faults after fault injection (c), and with one fault after repeated learning (d).
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account for multiple synaptic errors, still keeping the multiplicity low with respect
to the network's connectivity; effects are given in Fig. 5c. The simulation results
confirm the initial assumption of a very reduced influence of such errors on the
neural computation, even if it is not null.

Then, the effects of the second error instance, namely that by which a whole
neuron can be considered as error-stricken giving an unexpected value on its out-
put, are analyzed. In Fig. 6a, the percentage error of classification is given for a
three-layer net with a varying number of neurons in the input and in the hidden
layer when the fault is positioned in the input layer. The high error ratio when the
number of neurons in the first and second layers is small is to be expected, since
obviously the corresponding network is close to its minimum complexity and no
intrinsic redundancy is present. The apparently surprising increase in error for high
numbers of neurons can be justified by the sensitivity of stable configurations to
highly redundant net structures. In any case, the values obtained for errors are quite
high, surprisingly so in view of the general assumption of intrinsic fault tolerance
for neural nets.

Similar simulations have been performed also for networks with unperfected
learning in the absence of faults. In this case, the initial classification error is not
null since learning has been stopped as soon as the classification error dropped
below a predefined bound (namely, 40 in our experiments). As it was to be expected,
the effect of the fault is magnified in these conditions.

In Fig. 7 the effect of a faulty neuron in the hidden layer is represented, again
with respect to different network structures, while in Fig. 8 the fault has been posi-
tioned in the output layer (these two instances are computed for an initial 1000

classification capacity).
All the above simulations lead to the deduction that neural networks may be able

to mask some classes of errors (at least up to a given degree) due to the intrinsic
characteristics of the neural computation. But this ability does not hold for all
kinds of error and for all error magnitudes. As a consequence, neural networks can-
not be considered completely intrinsically fault tolerant at the behavioral level.

The effect of repeated learning as a weight adjustment technique is now exam-
ined to evaluate the limits of techniques enhancing the intrinsic masking ability
with respect to different error classes. Simulations have been performed for all the

FIG. 6. Error due to a faulty neuron in the input layer: after fault injection (a) and after repeated
learning (b).
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FIG. 7. Error due to a faulty neuron in the hidden layer: after fault injection (a) and after repeated
learning (b).

previous examples: the corresponding surfaces are represented in Figs 5d, 6b, 7b,
and 8b. With respect to the synaptic errors, given their modest initial relevance a
repeated learning phase grants almost complete error masking, as could expected,
but not exactly complete, as desired. Concerning the neuron errors, it should be
noted that, even after repeated learning, the residue error with partial learning (i.e.,
when the learning algorithm is stopped as soon as the actual computation error is
lower than a given upper bound and 1000 initial classification had not been
reached) is much higher than in the case of complete learning (i.e., when the learn-
ing algorithm runs until the residue error is steady). This can be interpreted as a
lower capacity of error recovery through repeated learning when the initial learning
was not definitely perfected. Moreover, as could be intuitively inferred, a faulty
neuron in the output layer is much more critical (even in the presence of repeated
learning) than one in the other layers, since weight redistribution has no actual
meaning in this case.

Simulations of the same type were then repeated by inserting two error-stricken
neurons; the corresponding classification errors are given in Figs. 9a and 10a for
different locations of the stricken neurons (clearly, it is useless to repeat the surfaces
corresponding to an absence of faults) while the situation after repeated learning is
represented in Figs. 9b and 10b.

FIG. 8. Error due to a faulty neuron in the output layer after fault injection (a) and after repeated
learning (b).
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FIG. 9. Error due to two faulty neurons in adjacent layers (one in the input layer, one in the output
layer): after fault injection (a) and after repeated learning (b).

Finally, errors and classification capacity after repetition of learning have been
derived for five-layer networks, always given the same classes of input patterns.
Here, synaptic errors have not been taken into account, given the previous results:
in fact, this final study was performed with the main scope of verifying whether the
multiplicity of layers affected the behavior in the presence of errors, and therefore
only errors producing relevant effects had an actual interest. Simulations carried
out allow us to draw meaningful conclusions, namely:

a. results are similar to those obtained for three-layered nets;

b. if the five-layered net has a comparable number of neurons as the func-
tional equivalent three-layered one, the input layer will have a lower number of
neurons and therefore it will be a rougher tessellation of the pattern class space. As,
it is to be expected, therefore, the effect of a fault in such a layer is more relevant
than in the three-layer case. Moreover, the effect of the fault is further magnified by
its propagation through a higher number of layers;

c. increasing numbers of neurons in the input layer, with the given classifica-
tion requirements, allow us to reach better fault-tolerance; this was also to be
expected, since the identical initial tessellation is implemented with a larger global
redundancy of the network.

FIG. 10. Error due to two faults in the input layer: after fault injection (a) and after repeated learn-
ing (b).
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The above analysis of weight redistribution through repeated learning proved that
learning (even in the enhanced versions) is not always able to guarantee a complete
masking ability of the errors induced by any class of faults and by any error
magnitude. As a consequence, still neural networks cannot be claimed in general to
be able to recover from errors induced by faults by exploiting the intrinsic charac-
teristics of the neural computation and its configuration through learning in the
presence of faults. This can be true, but under the strict conditions discussed in
Section 3. In other words, the neural network holds the error masking ability only
if the faults occurring in the implementing architecture induce errors that satisfy the
above constraints. Unfortunately, this is not a very frequent case, especially in the
dedicated digital realizations.

Obviously, acceptability of the amount of errors due to faults is strictly related
to the specific application and to the relative value with respect to the learning
error (i.e., the behavioral error measured in validation at the end of learning as a
result of imprecise generalization ability). If the error is sufficiently small for the
application, the designer can choose to rely only on the intrinsic masking ability of
the neural computation; otherwise, a suitable hardware support must be introduced
at the architectural level to guarantee error detection and, possibly, correction. To
verify the actual incidence of the faults on the nominal computation and the accept-
ability of induced errors, the designer should perform simulations similar to the
ones presented here by taking into account the probability distributions of the error
classes and the magnitude due to the actual probability distributions of faults in the
implementing architecture.

5. MAPPING OF FAULTS ONTO BEHAVIORAL ERRORS
IN VLSI IMPLEMENTATIONS

To verify the actual influence of faults onto the neural computation by using
either the theoretical analysis or the experimental simulation, the designer must
map first the faults on the behavioral errors in order to understand their effects on
the computation. Then, he or she must transform the fault probability distribution
(which specifies the space distribution in the circuit implementing the neural
network for each class of faults) into the corresponding error probability distribu-
tion at the behavioral level in order to evaluate the relevance of each class of error
in terms of frequency of occurrence and, as a consequence, to decide which classes
are more dangerous and need specific architectural supports to be dealt with.

A number of silicon implementations of neural networks have been presented in
the literature and various devices are even commercially available. In this section,
some of these implementations are analyzed from the point of view of the fault-
tolerance capabilities treated above so as to show, in particular, how the mapping
of hardware faults onto behavioral errors must be performed. The critical parts of
each of these implementations are identified and discussed.

The alternative approaches proposed in the literature (e.g., [26�34]) differ not
only in the implementation technology adopted (analog vs digital solutions) but
also with respect to the philosophy underlying the realization. While some architec-
tures simulate the nets' functions (so that no one-to-one correspondence between a
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single neuron's functions and a corresponding component's functions can be
created) others emulate the individual neurons; again, while in some solutions the
complex neural connectivity is mapped onto an identical physical connectivity [26]
in other solutions the logical data transfers are time-multiplexed onto a simpler
physical interconnection structure. Of the many silicon architectures, four are
selected as representative of some main approach: the basic characteristics shared
by most analog implementations and three digital architectures, each related to
some typical implementation problems.

Analog architectures in general do not involve any form of time-multiplexing
over the various components that implement the abstract operators present in the
neural network [27]. Physical faults affecting the logical components of such struc-
tures directly map onto the behavioral errors listed above, in a one-to-one corre-
spondence. Failures of individual synapses or individual multipliers can well be
modeled as discussed in Section 2, and mutual independence between faulty devices
(if multiple errors are to be taken into account) can safely be assumed. Usually, as
seen from simulation analysis, these faults are masked by intrinsic capabilities of the
neural computation, when enough information redundancy has been provided
through outputs' saturation: a fault will not result in global failure, but it will
simply degrade the system's operation, often leaving the possibility of recovery
intact. Faults in electrical components related to system-level activities (e.g., the
power supply, the weight-value refresh circuit, and the shifters used to extract the
system's outputs) are more critical since they affect in a fatal way the operation of
the whole system; it may be observed anyway that such global system elements are
found in any type of implementation and that robust design techniques can be
adopted for them.

The above considerations can be applied also to such digital architectures where
the intrinsic network parallelism is mapped onto the architecture without recurring
to time multiplexing; such is the case of the solution presented in [26], where large
pipelined binary trees are used to create the cells.

If more general digital solutions are considered, high system survival may often
be achieved at the architectural level by using reconfiguration policies [35]; unfor-
tunately, possible time multiplexing of some components to overcome the connec-
tivity requirements can transform a single physical fault into a multiple behavioral
error, thus affecting even in a relevant way the system's operation. Obviously, in all
digital architectures, faults in power supply and synchronization signals definitely
affect the neural computation by generating a system failure.

The first class of digital architectures examined here is based upon systolic array
structures which simulate the computation of ANNs. Examples of this approach are
given in [28, 34]. For this type of architecture, the case of multilayered back-
propagation networks is considered (see Fig. 11); the individual processing node
implements the functions of an associated neuron, and the synaptic weights
associated with the incoming synapses are stored within the corresponding nodes in
a recirculating memory. The neurons' outputs are fed from one layer into the
neurons of the subsequent layer and are propagated along the latter layer until all
weighted sums have been computed: only when the whole memory has recirculated
will the nonlinear function finally be evaluated. Reduced complexity of interconnections

40 VINCENZO PIURI



FIG. 11. Kung's architecture.

between neurons is balanced by intrinsic fragility from the point of view of fault
tolerance. All internal node faults (e.g., a fault in one word of the weight memory or
a multiplier fault) affecting the neural computation result in a global neuron fault. If
the node is able to exclude itself from the computation whenever a fault is detected
(by testing or online detection techniques [5, 7�12]), still granting correct operation
of the bypass switches that propagate the firing signals, a node's faults can be simply
mapped onto a stuck-at zero single-neuron error of the behavioral error model;
otherwise, much more complex stuck-at models must be introduced on the synapses.
Faults in interconnection links between adjacent layers, if conventional fail-safe
design techniques have been adopted, will appear as a stuck-at on the output of the
origin node and as a consequence they will be collapsed into the single-neuron error
class. Catastrophic consequences occur if a fault affects a link that propagates input
signals throughout a whole layer: all nodes in that layer will receive a whole
sequence of incorrect activation signals, and a massive failure will ultimately result.

A second class of digital implementations considers simulation of the neural
network by distributing the computation in the whole array instead of associating
neurons to array nodes [29]. No mapping (possibly through time multiplexing) of
synapses onto interconnection links can be identified: a row of the rectangular array
is dedicated to simulation of an individual neuron (see Fig. 12); the array computes
the product between the weight matrix and the network state, while the activation
signals are finally evaluated by the output column. While a single fault in the out-
put column maps onto the error of a full neuron, a fault in any cell of the rec-
tangular array corresponds to an error in the summation input to the evaluation of
the activation function. It should be noted that the relevance of such an error
depends not only on the proportional relevance of the value computed inside the
node with respect to the total summation, but also (and this is more critical with
respect to fault tolerance) with the position of the node in the row. Still, it can be
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FIG. 12. The neural architecture by Lehmann and Blayo.

added that multiple faults within a row map onto a single behavioral error;
moreover, even a fault in an interconnection link maps simply onto the error of one
neuron. If suitable fault-confinement policies are adopted for the circuit implemen-
tations, many faults can be reduced to pruning a number of synapses leading to a
specific neuron in the net. This architecture is thus highly robust since there is no
critical component whose failure is catastrophic due to the distribution of computa-
tion and to the locality of communications.

The third digital class is based upon array architectures with switched-bus struc-
tures. While it is quite obvious that in all such instances the buses become the hard-
core of the architecture as far as reliability is concerned, fault-tolerance policies
devised for this class of arrays may be adopted (although it might be recalled that
faults arising in the interconnection network are usually excluded from reconfigura-
tion policies) as much less probable than faults in processing nodes [35]). This
philosophy was adopted, e.g., in [36], where a first mapping of the neural network
onto an ideal strip architecture (subsequently folded along the dimensions of a rec-
tangular array) allows one to overcome a comprehensive set of physical faults by
exploiting the characteristics of layout and mapping at the same time. In that case,
as in other similar ones, mapping of physical onto behavioral faults is not relevant,
since the effects of faults are overcome at the architectural level independent of the
semantics associated with the faulty devices. A different approach has been adopted
in the neurocell array [30], a semi-custom approach onto which the given applica-
tion is mapped at production time by customizing interconnection routing, contents
of the weight memories, and control signals within the individual nodes (see
Fig. 13). The array consists of pseudo-neurons, each provided with a local weight
memory and with a processing unit which is capable of either evaluating the sum-
mation of weighted inputs (accumulated, if necessary, to a similar summation
provided by a previous pseudo-neuron) and forwarding this value to the subse-
quent pseudo-neuron or performing besides this linear operation also the evalua-
tion of the nonlinear function. Each neurocell can perform as a complete neuron or
as a pseudo-neuron in any position of a chain making up a complete (larger)
neuron. Input signals to the various pseudo-neurons are fed through a stack of
buses, through suitable delays, and output signals are fed by the final cell of each
neuron onto one of a stack of output buses. A fault in one word of a weight
memory maps onto a percentage error of a single synaptic weight; ifs effects can be
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FIG. 13. The neurocell architecture.

simulated and��if the defect is present at production time��a modified weight dis-
tribution can be a priori evaluated. A fault of the processing unit or a global fault
of its weight memory corresponds to an error in the summation input as far as the
set of synaptic weights stored in that neurocell are concerned; if isolation of the
faulty neurocell from the array buses is granted, then a pruned neural net is
obtained in which one neuron of a given layer is connected only to a subset of the
neurons in the previous layer. A fault on an input bus corresponds to pruning all
synapses coming from the same subset of neurons in the previous layer leading to
the subset of neurons fed by the bus itself. While a relevant error, it does not have
the global effects seen previously in the instance of the systolic-array mapping; in
fact, while time-multiplexing is present here also, it involves for each multiplexed
bus only a subset of both origin and destination nodes. Unless both origin and
destination nodes consist of single neurocells, a measure of computational capacity
will survive and (depending on the intrinsic redundancy of the network) an attempt
at modified weight evaluation can be made. Faults of an output bus correspond
to the failure of all neurons that feed their output signals onto this bus; as in the
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previous case, this is again a multiple but not necessarily a fatal failure. Further
robustness and system survival can be achieved by adopting reconfiguration
policies at the array level.

6. DESIGN GUIDELINES AND CONCLUSIONS

Theoretical considerations and simulation results on the effect of errors in multi-
layered feed-forward neural nets allowed us to reach a number of conclusions,
sometimes contrasting with intuitive evaluations currently proposed. Errors affect-
ing the synapses have been very limited consequences��even multiple errors may
imply no, or very little, modification of the network's behavior. On the contrary,
errors affecting the global behavior of even one single neuron easily lead to relevant
classification errors during the network's operation, although the network may be
structurally redundant with respect to the required nominal operations.

Mathematical conditions under which the distribution of weights can be modified
so as to mask the error have been derived. This weight redistribution can actually
be achieved, rather than by the analytical solution of a set of complex equations,
by a repeated learning phase or by applying a priori a learning technique oriented
to enhance intrinsic fault tolerance. The outcome of such a policy has been verified
by a number of simulation experiments. On the other hand, it is worth noting that
if the mathematical conditions mentioned above are not satisfied, there is no weight
redistribution (and, in turn, learning technique) that is able to guarantee the
desired error masking at the network outputs. In other words, masking will be only
partial: the degree of masking inability can be evaluated by measuring the distance
between the constraining value and the maximum value of the actual errors.

The most important result of the analysis is in fact that neural networks neither
can be considered completely intrinsically fault tolerant nor are enhanced learning
techniques able to grant complete masking ability, with respect to any class of
realistic behavioral errors induced by realistic faults.

While all the above has been developed with reference to purely behavioral errors
defined on an abstract network model, physical faults affecting a VLSI implementa-
tion can be mapped onto such errors so that the expected robustness of a given
architecture can be estimated. The critical points that would not allow system sur-
vival by neural net-oriented criteria can be detected, so as to apply in such
instances architecture-oriented solutions.

As methodological design guidelines, it is possible therefore to summarize the
analysis performed and the results achieved in this paper in the following design
steps to be performed by the neural architecture designer for the envisioned application:

(a) The actual criticality of the application must be first understood exactly
by analyzing the requirements. The bound =� for the output errors (due both to the
intrinsic limits of the generalization ability and to the possible faults) must be stated
precisely.

(b) The neural paradigm and the learning procedure must be selected, accord-
ing to the characteristics of the application and by exploiting the knowledge
available in the literature.
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(c) Training and validation data must be collected to perform learning and
to test the achieved generalization ability.

(d) Learning must be applied to the uncommitted neural paradigm to tailor
it to the application. The residue error is measured by applying the validation data.

(e) The perspective architectural implementation must be chosen according
to possible constraints on the realization (e.g., circuit complexity, throughput, and
latency).

(f) The fault model (including both the classes of possible faults and their
probability distribution in the neural circuit) must be determined from the con-
sidered implementation technology.

(g) The behavioral error model must be derived by mapping faults onto
neural errors. For each fault type, the corresponding neural error must be iden-
tified, as done in Section 5. The probability distributions of the error classes in the
neural paradigm must be computed by adding the occurrence probability of the
individual faults leading to the same error.

(h) The adopted and configured neural paradigm must be verified for its
masking ability with respect to the application's needs, by using either the theoreti-
cal framework discussed in Section 2 or the simulation approach of Section 4
applied to the error model obtained above. If the conditions guaranteeing the
masking ability are satisfied, the selected neural paradigm is completely intrinsically
fault tolerant for the envisioned application and no further strategy needs to be
taken into account to satisfy the fault-tolerance application requirements. If the
above conditions are not satisfied but the actual residual error appearing at the
neuron outputs in the presence of faults is smaller than =� anyway, the error can be
still considered masked by the generalization ability. If the actual error exceeds
=� ��at least for some faults��by a quantity that is tolerable by the application, the
intrinsic masking is not complete but is still suitable. In any of these cases, the
design procedure ends here.

(i) If the masking conditions are not satisfied, the designer should check if
there is any enhanced learning technique which is able to achieve the desired level
of fault tolerance. This can be done by checking if there is a suitable weight adjust-
ment, either by means of the theoretical analysis shown in Section 3 or by the
simulation of Section 4. If a solution exists leading to an acceptable neural error,
the theoretical weight adjustment or a most suitable learning technique [19] incor-
porating fault tolerance into the neural paradigm by enhancing the masking ability
through generalization must be adopted. Similarly, if the actual residual error
exceeds =� by a quantity that is tolerable, the intrinsic masking is acceptable even if
not complete. Again, in any of these cases, the design procedure ends here since no
further hardware support is required to protect the system.

(j) When intrinsic masking is not enough for the criticality of the application,
suitable structural supports must be introduced to achieve fault tolerance at the
architectural level. To such a purpose, the analysis of the error distribution provides
information about the relevance of each error both (in terms of both frequency and
magnitude). The architectural-level strategy must be selected in order to deal with
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these errors, according to their relevance on the neural computation and to the
residual error that is acceptable in the neural outputs. One or more techniques
could be required to reduce the output error below the maximum acceptable value,
encompassing the solutions proposed, e.g., in [7�12]. The adopted architectural
approach must also comply with the application constraints on the implementation
(e.g., circuit complexity, throughput, latency). Selection can thus be performed by
analyzing the costs and the fault-tolerance benefits of each technique for the
envisioned neural paradigm and implementing architecture.

By following these phases, the designer can obtain the best solution for his or her
application by taking into account contemporaneously and balancing both
behavioral-level constraints on the acceptable neural error and architectural-level
limits due to physical realizability and performance required by the application.
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