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Abstract 
A strmtured design methodology is introduced to support and guide the 
designer in using neural techniques to identify arid predict complex 
dynamic non-linear systems. 

1: Introduction 

Prediction and identification of a dynamic system with a black-box approach is 
necessary whenever the equations ruling the system are unknown or they are 
computationally untractable. In fact, in many real cases, the computational complexity 
may prevent an effective use for several applications (e.g., real time monitoring and 
adaptive/predictive control). 

Traditional black-box techniques (such as MA, AR, ARMA, ARX, ARMAX [l]) can 
be applied whenever the system is linear or can be linearized with an acceptable accuracy 
around a working point. Highly non-linear systems, as well as systems characterized by a 
smooth nonlinearity but operating in a wide range, may not be easily represented by a 
single linear !model, thus requiring decomposition in several working points and a model 
for each of them. 

Neural techniques are an alternative approach due to their intrinsic non-linearity, 
adaptability, noise immunity, generalization ability and robustness. Several successful 
experiments and general ideas on prediction and identificatioin have been reported in the 
literature (e.€,., [2, 4]), but a general framework is not yet available to guide the designer 
towards the construction of at least a nearly optimal solution with a reasonable 
confidence. This paper presents a comprehensive methodology for design neural networks 
in identification and prediction applications of non-linear dynamic systems. 

2: A Methodology for Creating Neural Predictors and Identifiers 

A general methodology for neural modeling must be able to deal with several aspects of 
a complex dynamic non-linear system, ranging from the internal structure to the 
interactions among components, from external constraints to safety issues, from stability 
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to intrinsic control loops. As a consequence, it must effectively deal with the following 
basic problems which often occur in real applications: 

Q modeling a large complex system. This task may be difficult if the system is 
considered as a whole, due to the computational complexity and the interfering 
objectives of the optimization functions. The system needs therefore to be 
decomposed into simpler subsystems. 

0 large non-linearities and several working points. When several working points (and, 
as consequence, models) need to be taken into account, the neural approach should 
limit their number with respect to the traditional techniques by exploiting the 
intrinsic non-linearities and generalization abilities. Local modeling around the 
working points or global modeling in the whole operating range must be captured in 
the neural descriptions: the first case allows for an accurate modeling but it requires 
separate neural models, while the second approach generates a single model having a 
possible lower accuracy. 

o local control loops cannot sometimes be opened. In fact, they may be safety loops, or 
opening them may increase the training complexity, or may require a detailed 
knowledge of physical phenomena. A basic behavior can be learnt by training the 
network in presence of the control loops, while the model can be then refined by 
opening (at least virtually) the control loops. 

By taking into account such problems, the overall design methodology is summarized in 
the following phases: 

0 system partitioning, 
0 selection of working ranges andpoints, 
0 modeling in the small with closed control loops for each operating range and point, 

modeling in the small with virtually-open control loops for each range and point, 
modeling in the large with closed control loops to merge the local behaviors, 

0 modeling in the large with virtually-open control loops to merge the local behaviors. 
Obviously, some of the above steps may be avoided when the application requirements 
and the system characteristics do not need them or when the model achieves satisfactory 
performances with respect to the application. 

Partitioning of the complex system into separate subsystems communicating through a 
limited number of system variables allows to limit the complexity of the modeling 
procedure. Training a large network capable of capturing the behavior of the whole 
system requires a longer and more accurate procedure to avoid behavior. Concurrent 
design by groups working in parallel thus becomes feasible. 
As a result, the system is decomposed in SISQ or MISQ subsystems (with possible 
reconvergent paths) since they are easily described by observing and measuring input or 
internal system variables, while either one system output or one internal system 
measurable variable is generated. The partitioning phase is guided by: subsystem 
simplicity, functional decoupling, interconnection clusters, observability and 
measurability of variables and controllability of subsystems inputs. A good approach 
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starts from physical and topological system analyses to ident:ify the components naturally 
composing tlhe system. 

Modeling in the small captures the non-linearity of the system behavior around a 
specific wofking point. Selection of these points and their neighborhoods is performed by 
analyzing the physical features and the typical operating conditions. Localization of the 
relevant non-linearities and partitioning into operating ranges is strictly related to the 
specific application case, but can be performed easily from a rough physical system 
description or a preliminary input-output experimental data analysis. 
The neural model associated to a working point is obtained by applying the following 
steps: 

0 generat.ing the input stimuli and the expected outputs in the given working range, 
0 selecting the sampling period, 
0 selecting the samples for learning, testing, and validation, 
0 normalizing the samples, 

selecting the neural model, 
0 

0 selecting the training procedure, 
0 configuring the neural model, 
e possible model optimization, 
0 validating the neural model. 

selecting the optimization figure of merit, 

A detailed (description of the above phases is given in the subsequent sections. The 
resulting neural model is valid only in the given range around the considered working 
point. As a consequence, several neural models must be created to cover the whole 
operating range of the system, as in the traditional approach; however, in neural solutions, 
it is possible to exploit their intrinsic non-linearities and their generalization ability so as 
to reduce the number of working points necessary to achieve a good approximation of the 
system behavior. Overlapping the local behaviors at the boundaries of adjacent ranges is 
implicitly achieved even if merging is not complete and homogeneous. It should be noted 
that such neural models are structurally similar differing basically on the number of 
neurons and the value assumed by interconnection weights. 
Modeling in the small is particularly suited to achieve a high accuracy around each 
working point; this solution may be not acceptable when a single model is strictly 
required by the application. 

Modeling with closed control loops considers the feed-back loops included in the 
system under modeling. The control loops limit the procesij behavior by correlating its 
inputs. As a consequence, the training procedure usually converges quickly to a good 
solution. Such a model may be acceptable in some applications, e.g., when the control 
loops cannot be opened or when the information loss is not critical for model accuracy. 

Modeling with open control loops allows to capture a more detailed knowledge about 
the process. In some applications the control loops can be opened, the inputs can be 
directly accessed and the associated outputs observed; prelirninary modeling with closed 
loops can thus be avoided, while the additional knowledge nnay be exploited for possible 
further accuracy. In other cases, the control loops cannot be opened but a more detailed 
knowledge about the subsystem behavior is desirable for accuracy and generalization 
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ability. This can be obtained by uncorrelating (at least partially) inputs and fed-back 
signals by adding small perturbations to the subsystem feedback signals so that the 
subsystem is modeled with virtually-open control loops. A priori, modeling with closed 
loops should be applied; if results are not satisfactory the virtually-open loops modeling is 
considered. 

Modeling in the large is directed to create a single model covering the whole operating 
range of the system, even if a loss in accuracy can be achieved with respect to the set of 
local models. This approach captures the overall behavior by spanning through all 
individual working local ranges. 
The configuration procedure consists of the same steps performed for modeling in the 
small but sample selection is performed on the whole inputs’ range. Also in modeling in 
the large, the closed loop phase as well as the open (or virtually-open) phase must be 
considered by adopting the same approach discussed for modeling in the small. 

3: Creating the Data Sets for Training, Testing and Validation 

In the data extraction phase the inputs of the system to be modeled are excited and the 
associated outputs measured. Data must be sufficiently informative to characterize the 
system behavior and are subdivided in three sets for modeling purposes: 

the learning set is used to training the neurd model, 
0 the testing set is necessary to monitor the evolution over training time of the model 

performance and provides a criterion for the termination of learning, 
the va2idation set, at the end of learning, estimates the performances of the model. 

Testing and validation sets must be independent from the training one to guarantee a 
significant evaluation of the model thus avoiding biasedness over the training set. 

The first step to create the above data sets consists of creating adequate excitation 
signals for each system input. These signals must persistently exciting (i.e. they must be 
able to fully excite all the system dynamics). Ideally, a white random noise signal should 
be consider to cover the whole significant input range. Unfortunately, this may not be a 
feasible signal in many real cases due to operating, physical, safety and economical 
constraints; a good alternative is a random signal to be composed of a combination of 
trains of steps and ramps with random amplitudes, periods and stepnesses (e.g., a Pseudo 
Random Binary Signal), covering the whole range of the input values. In MIS0 systems, 
this signal must be generated independently for each input to avoid possible correlations. 
In modeling with closed loops, the fed-back inputs are not considered as external inputs 
and therefore no excitations need to be generated. In modeling with virtually-open loops, 
perturbations (white noise or random signals) are added either to the set points or to the 
controlled inputs. 

The sampled data are obtained by sampling inputs and output signals according to a 
suited sampling period T. Identification of an optimal T is relevant for the model quality 
to minimize the variance of the weights estimation. The complexity of the equation-based 
system description does not allow in general any direct determination of T. As an 
empirical rule, an estimation can be obtained from spectral analysis of the input and the 
output signals. Each input signal is considered to be band limited: the sampling frequency 
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is assumed to be the double of the maximal cut frequency among all inputs and outputs. A 
correction factor (typically, 5) is usually adopted for safety due to the difficulties in 
selecting the cut frequencies. 

In some cases, the maximum absolute value of an input or output is one or more orders 
of magnitudle greater than the others so that the learning task could be ill-conditioned. 
Data normalization is thus necessary to improve efficiency of the training algorithm and 
to limit the possible dominance of some inputs or outputs with respect to the others. Data 
normalization avoids this problem by suitably scaling the datii to be given to the network. 
Good results are usually achieved by scaling inputs and outputs into the [-1,1] range. 

4: Selecting the Neural Paradigm 

Selection of the neural paradigm means definition both of the network topology and of 
the neurons’ operation. Static systems are modeled by feed-forward multi-layered 
networks, but dynamics need more complex paradigms: memory elements must be 
included in lhe neural model to hold information about the past behavior of inputs and 
internal states. Several models have been proposed in the literature: in practice, the best 
approach is to consider simple model first and increasing their complexity only when the 
modeling accuracy is not satisfactory. 

The dynamic system to modeled can be viewed as a black box in order to abstract from 
its internal characteristics. No knowledge is a priori required about its structure, even if 
any informalion about the system can be exploited to reduce the model complexity or 
simplify the parameter estimation. A generic system can be described by one of the 
following prediction model families: 

Yp ( t )  = $(Il(t) ,U(t  - l),U(t - 2), ..., U(t  - h),Y(t - l), Y(t  - 2), ..., Y( t  - k) )  

Yp ( t )  = $(U(t>,U(t - l), U(t  - 2),. .., U(t  - h),  Y(t  - l ) ,  Y( t  - 2 ) ,  .. ., Y( t  - k) ,  
Y p ( t - 1 ) , Y p ( t - 2 )  ,..., Y,(t - k ) )  

and by the fully recurrent family of models for the pure identilication case: 

Y,(t)  =$(U(t) ,U(t  - l) ,U(t  - 2),  ..., U(t - h),Y,(t - I), YP(t - 2), ..., Yp(t - k ) )  

being U(t) the input vector at time t ,  Y(t)  the output vector, Yp( t )  the predicted output 

vector, and 4) a non linear function. The identification models are intrinsically recurrent 
for dynamic (systems since the system state must be taken into account; prediction models 
are basically non recurrent, even if recurrent structures have !jhown better approximation 
ability in some applications [2]. 

The basic structure for prediction can be derived from the nature of the operation itself: 
foreseeing the system behavior after a given time interval from current and past inputs 
and from past actual outputs. This leads to a feed-forward multi-layered network, as in 
Fig. la; one or two hidden layers are enough for a good approximation in the NARX error 
model [i.e., the predicted output is a function of current and past inputs, actual past 
outputs and ai white-noise additive signal) [Z]. For SISO systems (generalization to MIS0 
is straightforward), the network inputs are the primary inputs of the real dynamic system 
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and as many previous system outputs as required by the dynamics. The number of 
feedback inputs is derived from the real system, e.g., by using a priori information coming 
from the physical model. The network's output is the system forecast output. Hidden 
neurons have usually sigmoid transfer functions, while the output neuron is linear; a 
variation is the radial-basis network having a gaussian activation function in all neurons. 
In some cases (e.g., NARMAX models), accuracy of the predicted output must be 
increased by including the past prediction errors, so that the neural structure is recurrent, 
as in Fig. l b  [2]. In some systems, the actual outputs are not easily observable so that past 
predicted outputs are fed back instead of the actual ones (Pig. IC) [3]. Stability and 
accuracy problems occur since learning operates on data possibly affected by noise. This 
is suited when predicted outputs depend on current and past system states and inputs. 
Feed-back loops at the level of the individual hidden layer have been considered, but no 
specific enhancement has been observed with such structures. 

Yp'" 

Figure 1 - Neural models: 
prediction under NARX (a) 
and NARMAX (b) error models; 
prediction and identification 
with global feedback loops 
under output error model (c); 
identification with local 
feedback loops (d); 
identification with explicit 

A rough idea of the output error model best matching the system black-box behavior is a 
priori required to achieve the optimum approximation; generally it can be derived from a 
rough physical model. Otherwise, selection can be performed a posteriori by evaluating 
the prediction error and testing if it is a white noise; in this case, the error model is 
correct, conversely, another model should be considered. 
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Models for identification have to capture the whole system behavior without any 
connection to the actual system outputs, but only to inputs, since the neural model must 
be able to replace the actual system. 
Neural networks with global feed-back loops (Fig. IC) gave interesting results [3]. Input!; 
are constituted by current and past primary inputs and by current and past predicted 
outputs, while the neural network is defined as the one presented in the prediction case. 
Another strwture adopts feed-back loops locally within eaclh neuron (Fig. Id) [2]. Thest: 
networks are quite difficult to be configured since often they have too many degrees of 
freedom and local states. This leads to a long training procedure. 
Alternative topologies may use distributed memory elements at the level of each layer; 
additional interconnections may be considered among neurons belonging to the same 
layer, as well as unstructured network topologies that do not limits the computation 
propagation to a single direction. From preliminary experiments, these complex structures 
seem provide only additional models with limited influence in the practice. 
System theory suggests a structure based on the state-outpui system model (Fig. le). The 
state variables are made explicit and the system model is p,artitioned in two blocks. The 
first block uses the past inputs and states to compute the current state; the second block 
approximates the output from the current state and inpuis. Two feed-forward multi- 
layered networks are required: the network for the states is recurrent, while the one for the 
output is simply regressive. Even if suited to represent any dynamic system, this structure 
may be diffcult to be created since the state may be not or not easily measurable. 

The specific neural topology must be specialized by defining the number of layers, the 
numbers of neurons in each layer, and the interconnection weights. In general, no direct 
relationship is available to guide the first two choices. From personal experience or from 
the literature, the designer usually identifies a structure large enough to deal with the 
specific application and verifies the correctness of this assumption by experiments. 
Underdimensioning may not allow to capture the complete system behavior due to lack of 
degrees of freedom. Overdimensioning induces usually over Fitting but the presence of the 
test mechanism keeps this effect under control. Once chosen significant training and 
testing sets, if the testing error presents a U-shape over the time, the model is 
overdimensioned with respect to the training set. Conversely, if the testing error is 
decreasing in the average over time, the model has been properly dimensioned. 

5: Training and Validating the Neural Model 

The learning procedure tailors the neural model to the specific application: the 
learning set is presented to the inputs, outputs are computed accordingly and compared to 
the expected values, while weights are adjusted to minimize the optimization figure. 

The trainiing scheme used to configure a neural predictor. is shown in Fig. 2a for the: 
model of Fig. la. Current and past inputs are given to the network with the past system 
outputs. Extension to the case of Fig. l b  can be obtained by feeding the past prediction 
errors into the network as additional inputs; the case of FTig. IC can be dealt with by 
replacing the past system outputs with the past predicted outputs as in Fig. 2b. Stability is 
straightforward in the first case since it is a feed-forward structure, while the recurrent 
nature of the other two cases and the use of possibly erroneous outputs may induce 
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problems, in particular for MISO and MIMO systems. Stability, whenever possible, is 
learnt during training, but it is usually paid as a prolonged application of the learning 
procedure. 

The learning scheme for the neural identifier with global feed-back loops (Fig. la) can 
be derived from the corresponding one-step predictor, when the training procedure has an 
absolute error with the same magnitude of signal measurement. The expected output is 
quite identical to the actual output of the modeled system at every time and, as a 
consequence, it can replace the actual system output at any time (Fig. IC). During 
training, the network topology is the prediction one (Fig. la) with the configuration 
scheme of Fig. 2a; after training, the network topology is shown in Fig. IC. In general, 
this approach is quite fast due to the absence of system feed-backs, but it is effective for 
SISO systems and presents problems in the MISO case. 
An alternative approach trains the network of Fig. l a  directly. Stability, whenever 
possible, is learnt during training, even if a prolonged learning mayise necessary. 
In the presence of local or distributed feed-back loops, the training procedure must deal 
with the recurrent model structure, directly. For the state-output model of Fig. le, the 
learning scheme separates the state network (which uses past states and inputs) from the 
expected output network (which operates on current inputs and state); each of these 
training is performed independently. 

U 
>- 

Neural 

Dynamic System y(t) 

Procedure 

Figure 2 - Learning schemes for prediction (a) and identification (b). 

Since dynamics have to be captured, data sets presented at each iteration of the learning 
procedure are not composed by pairs of input-output values, but by continuous sequences. 
Data in the learning set are therefore organized in subsets and batches. Each subset is 
related to a specific transient event in the system, while each batch is a group containing 
as many data as the network primary and state inputs. The number of batches in a subset 
is related to the meaningful length of the transient event, i.e., to the characteristic time 
constants of the system. Subsets must be cascaded without introducing discontinuities 
that do not exist in the real world. Subsets are presented several times in a random order 
to avoid possible network polarization on the last subsets and memory decay for the 
initial subsets. Within each subset, batches are sequentially presented several times to 
enforce a good understanding of the event by exciting the neuron polarization. 
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uuring learning, an optimization rigure 01 merit is evaluated: the most used is the mem 
square error, evaluated on the whole outputs’ trajectory or on an outputs’ subset. Weight 
adjustment: is performed by an external supervisor by using the descendent-gradient 
algorithm, the conjugate-gradient algorithm, the quasi-.Newton approach, or other 
minimization techniques. Weights modification can be performed either at each sampled 
data or at the end of each batch of input-output. No specific rule is available to define a 
priori the number of repetitions of each subset presentation. 
Learning termination can be identified by using the test data set: as soon as the test error 
continues to increase, the generalization ability begins to decrease due to overfitting and 
learning should stop. However, in the practice, the test procedure can be applied only 
periodically to avoid an unnecessary coinputational overhead; a compromise between 
quality and performance is achieved by alpplying the test phase at the end of groups of 
subsets containing a limited number of transient events (typically, few tens of times the 
number of events in the test set). 

If the obtained network is overdimensioned with respect to the problem, optimization 
techniques can be envisaged. They reduce the topological complexity by removing 
unnecessary neurons or interconnections either by pruning a.t the end of the training phas8e 
or by modifying the figure of merit used during learning so that to penalize large 
topologies. 

To evaluiate the model quality, i.e., the generalization abil.ity, validation is performed by 
applying t:he validation data set at the end of learning. The measure generated b’y 
validation is the same figure of merit used for learning. 

6: Conclusions 

A general methodology for practical application of neural prediction and identification 
of non-linear dynamic systems has been discussed; guidelines have been given as a 
general framework to overcome uncertainty and drawbacks of the traditional approaches 
to the use of neural networks. Due to the overall complexity and interrelationships among 
design choices, effectiveness of each choice need to be checked on the specific 
application: the method limits spectrum of alternatives and clarifies the design operations. 

This methodology may be useful in design and implementation of advanced adaptable 
noise-tolerant control, monitoring and personnel training systems as well as in embedded 
systems with heterogeneous (neural andl algorithmic) components: two of the most 
exciting challenges for industry and academia in the near fuiure. 
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