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Abstract—The rapid proliferation of edge IoT systems in
critical infrastructures, from smart cities to industrial IoT (IIoT)
environments, has introduced significant security challenges,
particularly Distributed Denial-of-Service (DDoS) attacks. These
attacks can degrade service quality and compromise the availabil-
ity and integrity of services. Although deep learning (DL) models
have shown promise in detecting DDoS attacks, their reliance on
large, high-quality labeled datasets limits their adaptability in
dynamic IoT environments. Transfer learning offers a potential
solution; however, existing methods often struggle with domain
adaptation and effective knowledge transfer across heterogeneous
datasets, leading to suboptimal performance against evolving
attack patterns. To address these challenges, we propose Trans-
ferEdge, a novel transfer learning-based approach to detect evolv-
ing DDoS attacks in industrial IoT edge systems. TransferEdge
leverages pre-trained models and describes a novel approach to
optimize fine-tuning strategies tailored for DDoS attack detection,
so as to align feature spaces and bridge the distributional gap
between source and target domains. Experimental evaluations
on the UNSW-NB15 and BoT-IoT datasets demonstrate that
TransferEdge improves detection accuracy and decreases training
time compared to conventional DL. methods and current transfer
learning approaches.

Index Terms—Transfer Learning, IoT Security, DDoS Detec-
tion, Edge IIoT, Fine-Tuning

I. INTRODUCTION

The rapid proliferation of edge IoT systems in critical in-
frastructures, from smart cities to industrial IoT (IloT) environ-
ments, has revolutionized data processing and decision making
at the network edge. However, this interconnectivity introduces
a significant security vulnerability, particularly in defending
against Distributed Denial-of-Service (DDoS) attacks that can
severely degrade service quality and compromise the availabil-
ity and integrity of essential services [1].

Various approaches exist for DDoS detection, including
signature-based and anomaly-based methods [2]. Anomaly-
based detection is often preferred for its ability to identify
new and evolving attack patterns [3], [4]. Among anomaly-
based detection, deep learning (DL) models show promise due
to their capability of automatic feature extraction. However,
their effectiveness is hindered by the need for large, high-
quality labeled datasets, limiting adaptability in dynamic and
data-scarce IoT environments [3]. This challenge is further
exacerbated in IoT ecosystems due to resource restrictions,
privacy concerns, and the high cost of data labeling required
to train the DL model [5], [6].

Transfer learning is a promising approach to IoT intru-
sion detection and DDoS attacks, particularly in resource-

constrained edge IIoT devices, which are prevalent in critical
infrastructure settings [7]. Several transfer-learning techniques
have been proposed for DDoS attack detection, including: [6]
introduced a CNN-based approach, [8] leveraged pre-trained
transformers to handle distribution shifts, [S] proposed a dual
autoencoder, and [9] fine-tuned pre-trained CNN and BiLSTM
models for DDoS detection in 5G networks. However, research
gaps remain in optimizing the fine-tuning of these pre-trained
models for efficient deployment in resource-constrained edge
IIoT environments. To address these challenges, we propose
TransferEdge, an innovative transfer learning approach for
Edge-1IoT systems, leveraging CNN and pre-trained models to
introduce a computationally-efficient methodology to optimize
the fine-tuning strategies for DDoS attack detection, bridging
the distributional gap between source and target domains.

We introduce the following main contributions:
(i) computationally-efficient transfer learning to optimize
fine-tuning strategies for specific datasets, including domain
adaptation, differential fine-tuning (using variable learning
rates), and selective layer fine-tuning (updating attack-
sensitive layers) to reduce computational overhead, and
(ii) validation using real-world cybersecurity datasets,
proving its effectiveness in resource-constrained edge IloT
environments.

The remainder of this paper is structured as follows.
Section II reviews related work on transfer learning-based
intrusion detection in industrial IoT. Section III describes our
methodology, including model architectures, transfer learning
framework, and proposed fine-tuning strategies. Section IV
outlines the experimental setup, datasets, evaluation metrics,
and results. Section V discusses the implications of our
findings and suggests future research directions. Finally, Sec-
tion VI presents the conclusions and future research directions.

II. RELATED WORKS

Several studies have explored anomaly-based DDoS attack
detection using transfer and deep learning. For instance, the
work of [6] addressed the challenge of data scarcity in an
intrusion detection system (IDS) by proposing a CNN-based
transfer learning approach. Moreover, it leverages knowledge
from large labeled datasets to enhance detection accuracy in
resource-constrained environments. Building on this concept
in the context of critical infrastructure security, the work in
[10] introduced a transfer learning-based intrusion detection
for communication-based train control (CBTC) systems. Their
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framework integrates CNNs of one dimension with LSTM
networks to effectively capture both spatial and temporal
attack dynamics.

Moreover, to overcome the challenge of limited labeled
data, various pre-trained models have recently emerged as
powerful tools in cybersecurity. In [8], pre-trained transformers
were employed to handle distribution shifts and data scarcity
in communication networks. Similarly, [5] introduced a dual
autoencoder-based deep transfer learning framework, enabling
effective knowledge transfer from labeled to unlabeled IoT
datasets. Their approach demonstrates enhanced detection ca-
pabilities for novel attacks, highlighting the efficacy of transfer
learning in detecting threats.

The relevance of transfer learning has also been demon-
strated in emerging networks, including 5G, particularly for
DDoS attacks. The works described in [7] and [9] present
fine-tuned pre-trained CNN and BiLSTM models using limited
real-world 5G datasets, showing considerable results in iden-
tifying sophisticated DDoS attacks. The studies underscore
transfer learning’s ability to generalize across heterogeneous
network environments, making it particularly valuable for
zero-day intrusion detection scenarios in complex networks.

The integration of ensemble methods with transfer learning
has further enhanced detection robustness. In their work [11],
the authors discussed an IDS framework combining multiple
CNN architectures (VGG16, Inception, Xception), optimized
through hyperparameter tuning and ensemble learning, out-
performing single-model IDS approaches. Furthermore, cross-
network transfer learning, as explored by [12], demonstrated
effective intrusion detection by aligning the knowledge of the
source networks with the unlabeled target networks, highlight-
ing its suitability for heterogeneous industrial environments.
Moreover, [13] proposed a robust DDoS attack detection
framework that uses adaptive transfer learning to overcome the
heterogeneity and scarcity of data for network traffic, in both
tabular and image format datasets, into representations that are
amenable to DL and employ hyperparameter optimization and
fine-tuning strategies.

Existing studies provide a robust foundation for addressing
critical challenges in DDoS detection, particularly in identi-
fying evolving threats within data-constrained industrial IoT
environments. Building on these insights, this paper proposes
a novel transfer learning approach to detect evolving DDoS
attacks in Edge-based IIoT systems.

III. METHODOLOGY

This subsection presents our transfer learning methodology
for improving DDoS detection in edge-based IIoT. We outline
the framework for domain adaptation, describe baseline ar-
chitectures, introduce EdgeTransfer fine-tuning strategies, and
detail our evaluation methods.

A. Overview of the Transfer Learning Framework

Transfer learning is a strategy that leverages the knowledge
gained from one problem domain (the source domain) to
improve learning in a related but different domain (the target

domain). It involves training a model in a source domain Dg
with a large dataset and transferring the learned knowledge to
a target domain D7, which has a smaller dataset. This process
can be represented as follows: Given a source dataset:

Dg = {(z7, )} (1)

with Ng samples, a model fg is trained to learn representa-
tions by optimizing parameters 6g:
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where £(-) is the loss function. We then take the learned
weights and use them to train the CNN for the target domain
(edge IIoT). Because data in this domain is limited, we fine-
tuned the model by minimizing the average error on the target
samples. The learned parameters 6% are transferred to the
target model fr in the target domain:
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where N7 < Ng. The model is then fine-tuned or adapted:
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This allows the model to retain useful features from Dg while
adapting to the specific patterns in Dp. This adaptation helps
the models capture the unique characteristics of the edge IloT
environment while retaining the valuable features learned from
the DDoS data.

B. Baseline Model Architecture

In this paper, we applied a CNN model trained on the
UNSW-NBIS5 dataset as the source model and transferred it
to the BoT-IoT dataset using a set of fine-tuning strategies.
Additionally, we implemented and fine-tuned several state-of-
the-art DL architectures to evaluate their performance on the
target dataset. The details of those model architectures are
explained in the following.

1) CNN model: We employ CNNs as our foundational
architecture to automatically extract hierarchical features from
network traffic. We select CNNs for their simplicity and
low computational cost, which we need to meet the resource
constraints of Edge-IloT devices while still providing a reliable
baseline for DDoS attack detection in the literature [14].

2) VGG8/VGGI16: We use VGGS as a lightweight variant
of the VGG family, designed with fewer layers to balance
performance and resource efficiency. It is a straightforward,
sequential architecture for rapid inference and interpretabil-
ity, especially in environments with limited computational
resources [15]. We also use VGG16 for its deep architecture
that extracts detailed representations of features [16].

3) ResNetl8: ResNetl8’s residual connections, introduced
by Microsoft [17], enable deeper architectures while mitigating
the vanishing gradient problem, making it efficient at extract-
ing complex features from heterogeneous edge data.



4) EfficientNet: The compound scaling strategy of Effi-
cientNet is particularly advantageous for Edge-IloT environ-
ments [18]. It achieves high accuracy with fewer parameters
and lower computational cost, which is essential when pro-
cessing data at the edge.

5) Xception: We use Xception pre-trained on ImageNet
[19] due to its feature extraction capabilities that generalize
well to diverse tasks, even with limited labeled data typical in
resource-constrained IoT/IIoT environments.

C. Fine-Tuning Strategies

The edgeTransfer approach employs four distinct fine-
tuning strategies to optimize knowledge transfer from source
to target IIoT systems, as illustrated in Figure 1 and detailed
below.

1) TLO — Baseline Transfer Learning (No Freezing): In
this scenario, we employ all layers of the pre-trained model
that are fine-tuned on the target domain without freezing any
weights. This approach allows the model to fully adapt to the
evolving attack patterns in the target domain, enabling it to
learn domain-specific features.

2) TLI — Last Layer Retraining: In the last layer retraining
scenario, we assume that the majority of the pre-trained
network already possesses robust and transferable features that
apply to the target domain. Therefore, instead of updating the
entire model, only the final classification layer is re-trained.
The generic feature extraction layers remain fixed, and only
the decision-making layer that maps these features to specific
attack classes is updated.

3) TL2 — Differential Fine-Tuning: Differential fine-tuning
applies varying learning rates to different layers based on their
role in feature extraction. We update early layers, which cap-
ture generic features, with a smaller learning rate (1e—>5) and
higher learning rates (le—3) for deeper layers to effectively
preserve stability while learning new features. We fine-tune
middle layers with a moderate learning rate while updating
deep layers, responsible for domain-specific features, with a
higher learning rate.

4) TL3 — Selective Layer Fine-Tuning: Selective layer fine-
tuning takes a more targeted approach by identifying and
updating only the most critical layers for the target domain.
This fine-tuning scenario employs sensitivity analysis using
gradient-based methods to determine which layers are most
critical to adapting the model to the target domain. In this
approach, the loss gradients for the parameters of each layer
are calculated to quantify the influence of each layer on
the model’s performance [20]. Layers with high gradient
magnitudes indicate a strong sensitivity to changes in the input
data and are thus identified as essential for capturing attack
patterns. Only these sensitive layers are subsequently fine-
tuned, while the remaining layers are kept frozen, as elaborated
on in the following equations.

In particular, we consider the edge IIoT traffic data X, a
pre-trained model f(X;6) which computes predictions ¢ and

the cross-entropy loss L:
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where 0 = {61, ..., 60} are model parameters across L layers.
During backpropagation, we quantify the sensitivity of layer
l as the expectation of gradient magnitudes over training

batches:
oL
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Layers with higher .S; are prioritized for adaptation, as they
most influence threat detection accuracy. We classify layers
by S; and select the top-k for adaptation. Parameters in these
layers are updated via:

Sl = IE)batches H
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where I(-) is an indicator function (1 if [ is selected, 0
otherwise), and L., uses target datasets. Non-selected layers
remain frozen, reducing computational costs by 1 — % for the
edge deployment.
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D. Evaluation Metrics

We use accuracy, precision, recall, F1 score, and robustness
as evaluation metrics to evaluate the results of the proposed
TransferEdge approaches.

IV. EXPERIMENTS AND EVALUATION
A. Dataset

We use the UNSW-NBI15 dataset to build a robust source
model and then adapt it for the smaller BoT-IoT dataset
to simulate edge-based IIoT scenarios with limited data. To
assess the model’s adaptability to evolving threats, we intro-
duce unseen attack types in the target dataset. The following
sections provide details on the preprocessing steps and each
dataset.

1) UNSW-NBI5 dataset: A popular benchmark for network
intrusion detection, the UNSW-NB15 dataset' covers a vari-
ety of attack methods and typical traffic patterns. Duplicate
data were eliminated, missing values were handled, irrelevant
features were filtered out, numerical features were normalized
using Min-Max scaling, and categorical features were encoded
using one-hot encoding as part of our preprocessing steps. The
types of attacks and their distribution in our experiments are
shown in Table 1.

2) BoT-IoT datasets: The BoT-IoT dataset’ is a commonly
used benchmark for network ID, covering everyday traffic
patterns and a variety of attack techniques. We use its smaller-
scale records to simulate real-world Edge-IIoT scenarios with
limited data availability. As the target data set, BoT-IoT
tests the adaptability of our pretrained model in resource-
constrained settings. To simulate evolving IloT threats, we
considered previously unseen attack types. We preprocessed

Thttps://research.unsw.edu.au/projects/unsw-nb15-dataset
Zhttps://research.unsw.edu.au/projects/bot-iot-dataset
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Figure 1: The overall process for all scenarios. (a): TLO — Baseline Transfer Learning (No Freezing); (b): TL1 — Last Layer
Retraining; (c) TL2 — Differential Fine-Tuning; (d): TL3 — Selective Layer Fine-Tuning.

Table I: Class Distribution in UNSW-NB15 and BoT-1oT
Datasets after preprocessing

UNSW-NB15 # Records \ BoT-IoT # Records
Benign 2,218,761 Benign 92,543
Generic 215,481 | DoS 32,480
Exploits 44,525 | DDoS 5,194
DoS 16,353 | Theft 1,587
Recon. 13,987 | Recon. 21,639

the dataset by handling missing values and duplicates, ap-
plying Min-Max scaling to numerical features, and one-hot
encoding categorical variables. The attack types and their
distribution in our experiments are shown in Table 1.

B. Hyper parameters

To find the best values for the hyperparameters, we defined
a uniform search space: learning rates from 1 x 107° to 1 x
10~%; batch sizes of 64, 128, and 256; weight decay from 0
to 1 x 10™%; and fine-tuning epochs between 20 and 100.

Four transfer learning scenarios were evaluated on CNN,
VGG8/16, ResNetl8, EfficientNet, and Xception using random

search (50 trials per model scenario) on Google Colab with a
T4 GPU (16 vCPUs, 64 GB RAM).

V. RESULTS AND DISCUSSION

A. Comparative Analysis of Fine-tuning Strategies

We evaluated the proposed EdgeTransfer fine-tuning strate-
gies across CNN and pre-trained models, as shown in Table
I. In the TLO setting (no freezing) on the BoT-IoT dataset,
VGG16 achieved near-perfect performance (99.99% preci-
sion, recall, and Fl-score), outperforming CNN (99.90%),
ResNet18 (99.83%), and the other models. However, VGG16
required 68.7 minutes for training-nearly three times longer
than CNN (22.4 minutes), highlighting the need of a trade-
off between detection accuracy and efficiency. In this sense,
EfficientNet offered a balance, achieving 99.87% accuracy
with a reduced training time of 47.1 minutes.

Table III presents the results for TL1 — Last Layer Re-
training, where EfficientNet achieved the highest perfor-
mance (99.97% across all metrics), followed closely by
CNN (99.89%) and ResNet18 (99.84%). VGG16 demonstrated



Table II: Performance Comparison of Models on BoT-IoT
Using TLO — Baseline Transfer Learning (No Freezing)

Model Accuracy Precision Recall F1-Score Train Time [m]
CNN 99.90 99.90 99.90 99.87 224
VGG8 99.87 99.87 99.87 99.87 41.8
VGG16 99.99 99.99 99.99 99.99 68.2
ResNet18 99.83 99.83 99.83 99.83 724
EfficientNet 99.87 99.87 99.87 99.87 47.1
Xception 99.91 99.91 99.91 99.91 53.51

Table III: Performance Comparison of Models on BoT-IoT
Using TL1 — Last Layer Retraining

Model Accuracy  Precision Recall F1-Score  Train Time [m]
CNN 99.89 99.89 99.89 99.86 38.7
VGG8 96.28 96.28 99.42 99.35 65.2
VGG16 99.64 99.64 99.64 99.64 108.4
ResNet18 99.84 99.84 99.84 99.84 59.7
EfficientNet 99.97 99.97 99.97 99.96 95.3
Xception 99.64 99.64 99.64 99.64 82.69

Table IV: Performance Comparison of Models on BoT-IoT
Using TL2 — Differential Fine-Tuning

Model Accuracy Precision Recall F1-Score Train Time [m]
CNN 99.91 99.91 99.91 99.88 35.2
VGG8 99.84 99.84 99.84 99.85 62.4
VGG16 99.88 99.89 99.88 99.88 95.6
ResNet18 99.83 99.83 99.83 99.83 89.9
EfficientNet 99.87 99.87 99.87 99.87 71.9
Xception 99.75 99.75 99.75 99.75 77.83

Table V: Performance Comparison of Models on BoT-IoT
Using TL3 — Selective Layer Fine-Tuning

Model Accuracy Precision Recall F1-Score Train Time [m]
CNN 99.89 99.89 99.89 99.86 8.4
VGGS8 99.85 99.68 99.84 99.76 12.1
VGG16 99.92 99.92 99.92 99.92 24.7
ResNet18 99.88 99.88 99.88 99.88 27.5
EfficientNet 99.84 99.67 99.84 99.76 14.9
Xception 99.91 99.91 99.91 99.91 16.59

strong but slightly lower results (99.64%), while VGGS8 lagged
with 96.28%, despite maintaining high recall.

In scenario TL2 — Differential Fine-Tuning, as shown in
Table IV, CNN achieved the highest performance (99.91%),
followed closely by VGG16 (99.88%), VGG8 (99.84%),
and ResNetl8 (99.83%). EfficientNet also performed well
(99.87%) maintaining a strong balance across all metrics.

Table V illustrates the metrics of various models in the
BoT-IoT dataset under TL3 — Selective Layer Fine-Tuning.
VGGI16 achieves the highest accuracy (99.92%) among the
models, closely followed by Xception (99.91%). These models
also demonstrate strong precision, recall and F1 score metrics,
indicating their robustness in detecting diverse types of DDoS
attacks with minimal false positives.

These results underscore the importance of transfer learning
in DDoS detection capabilities within resource-constrained
Edge IloT systems. In particular, the comprehensive fine-
tuning strategy TLO applied across all network layers en-
abled the improvement of model performance, with VGG16
achieving the highest detection accuracy despite its increased
computational overhead. In contrast, TL3 significantly reduced

training time compared to other scenarios (TLO, TL1, TL2),
demonstrating its practical efficiency for deployment in Edge-
IIoT environments where computational resources are limited.
B. Analysis of Training Dynamics

Figure 2 illustrates the training dynamics of CNN-based
transfer learning from the source to the target domain. TLO
— Baseline Transfer Learning (No Freezing) overfits source
domain patterns, exhibiting validation loss instability (fluctu-
ations of £0.02 at epoch 15) despite rapid early convergence
(~99% accuracy by epoch 5). In contrast, TL2 — Differential
Fine-Tuning achieves optimal balance, maintaining ~99% val-
idation accuracy with minimal divergence (training-validation
gap < 2%, Ajss < 0.1 after epoch 20), indicating stable cross-
domain adaptation. While TLO attains near-perfect training
accuracy (99.9%), its validation performance aligns incremen-
tally, reflecting gradual refinement of hierarchical character-
istics. These results highlight the critical trade-off between
computational efficiency and accuracy: TL2 enables resource-
efficient adaptation, whereas TLO maximizes accuracy at a
higher computational cost, emphasizing the role of layer-
specific flexibility in preserving domain-invariant features for
cross-domain attack detection.

C. Adaptability Analysis

The transfer learning capabilities of the proposed approach
demonstrate the possibility of CNNs to adapt to changing
conditions, by showing how a network trained on one dataset
can be effectively tuned on a different one, in some cases
with limited training times. In particular, we evaluated the
adaptability across six backbone architectures (CNN, VGGS,
VGG16, ResNetl8, EfficientNet, and Xception) in both trans-
fer directions (UNSW-NB15->BoT-IoT and BoT-IoT->UNSW-
NB15). To further evaluate how the proposed methodology can
adapt to changing network conditions, we perform a double-
stage transfer learning experiment, by training the CNNs on
the first dataset, tuning on the second, then again tuning on the
first dataset (e.g., UNSW-NB15->BoT-IoT->UNSW-NB15).
We experiment in both forward and reverse directions, with
no significant differences in accuracy with respect to training
a CNN on a single dataset. These results demonstrate that
EdgeTransfer’s staged double transfer strategy consistently
mitigates domain shift, making it well-suited for real-time
DDoS detection at the IIoT edge under dynamic network
conditions.

VI. CONCLUSION

This paper introduced TransferEdge, a novel approach
to optimizing transfer learning and fine-tuning algorithms
for detecting evolving DDoS attacks in resource-constrained
Edge-1IoT environments. By integrating pre-trained models
with fine-tuning strategies optimized for the specific datasets
considered, TransferEdge addresses domain shift and data
scarcity while optimizing detection performance. Experimental
validation, using UNSW-NB15 as the source dataset and BoT-
IoT as the target domain, demonstrates that TransferEdge-
enhanced architectures (CNN, VGGS8, VGG16, ResNetl8,
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Figure 2: Training and validation performance of TransferEdge strategies (TLO-TL3) for DDoS attack detection: Transfer from
UNSW-NBI15 (source) to BoT-IoT (target). (a): TLO; (b): TL1; (c): TL2; (d): TL3 metrics of accuracy and loss curves.

EfficientNet, and Xception) improve accuracy in identifying
novel attack patterns. These results highlight TransferEdge’s
effectiveness in strengthening industrial IoT cybersecurity, of-
fering a scalable solution against DDoS threats. Future works
will consider online learning to further assess performance in
changing and dynamic network conditions, as well as consider
a security analysis by modeling adversarial attacks and inte-
grating cryptographic safeguards in large-scale, heterogeneous
deployments.
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