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Abstract— The rapid expansion of IoT devices has trans-
formed numerous industries by enabling extensive data collec-
tion and real-time analytics. Federated Learning (FL) offers
a decentralized model training paradigm that ensures data
privacy, making it particularly suitable for IoT environments.
Yet, it remains vulnerable to poisoning attacks that can
severely compromise model integrity, wherein malicious clients
compromise the global model by injecting poisoned updates.
Existing defenses, which focus primarily on global model perfor-
mance, often fail to effectively integrate local anomaly detection
with global weighting mechanisms, thus limiting their efficacy
against such threats. Addressing this research gap, we propose
FLIFRA (Federated Learning Isolation Forest with Robust
Aggregation), a hybrid defense framework that combines client-
side anomaly detection using Isolation Forest (iForest) with
dynamic reputation-based robust aggregation at the server. This
dual-layer approach filters out malicious updates before aggre-
gation and adjusts client reputations to mitigate adversarial
influence. Our evaluation of three cybersecurity datasets (CIC-
IDS2018, BoT-IoT, and UNSW-NB15) under various intensities
of poisoning (10%, 20%, 30%, and 40%) demonstrates that
the proposed method outperforms the traditional aggregation
schemes of FedAvg, Krum, Trimmed Mean, DRRA, and Wei-
Detect in the literature. In particular, our framework achieves
higher detection accuracy, faster convergence, and improved
stability, even in highly heterogeneous data environments.

I. INTRODUCTION

The exponential growth of IoT ecosystems has signifi-
cantly transformed the digital landscape, creating intercon-
nected devices that facilitate seamless data exchange and
automation. These devices generate a large amount of data,
essential for improving services and enabling predictive
capabilities. However, the sensitivity and distributed nature
of the data have also made IoT environments attractive
targets for sophisticated cyberattacks. Ensuring the security
of these decentralized networks is paramount, particularly
against malicious activities that threaten their reliability and
functionality. Thus, Federated Learning (FL) has emerged as
a promising paradigm for securing IoT ecosystems, enabling
decentralized model training across IoT devices while ensur-
ing data privacy and reducing the communication burden by
avoiding the transfer of raw data [1].
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With its decentralized nature and reliance on clients, FL in-
troduces critical vulnerabilities for poisoning attacks, aiming
to compromise the performance of the global model. These
attacks are particularly dangerous in IoT settings, where
diverse, non-IID data distributions exacerbate their impact.
For instance, backdoor attacks embed triggers in input data
to induce targeted misclassifications, allowing adversaries to
manipulate predictions under specific conditions [2], thus
inducing IoT-based intrusion detection systems to misclassify
malicious traffic as benign. Moreover, label-flipping attacks
can corrupt the training process by altering class labels,
confusing the model, and degrading overall accuracy [3].
Another attack example is represented by gradient manipula-
tion, which directly alters the shared gradients during training
and corrupts the global model by injecting subtle but harmful
updates during aggregation [4].

Existing approaches to mitigate data poisoning attacks in
FL focus on client-side detection [5], [6] or server-side de-
tection [7]–[10], rather than adopting a holistic strategy. This
division reduces overall effectiveness: client-side methods
may fail to detect sophisticated attacks, while server-side
techniques lack granular insights into local data distributions
[11]. These limitations underscore the need for a robust, scal-
able, and adaptive solution tailored to the unique challenges
of IoT ecosystems [12]. To address these limitations, we
introduce a novel dual-layer framework that integrates local
anomaly detection iForest with a global dynamic reputation-
based robust aggregate (DRRA) mechanism: at the client
level, iForest rigorously examines local training data and
model behavior to identify anomalous updates effectively,
while at the global level, the DRRA mechanism dynamically
adjusts client contributions based on historical performance.

This paper makes three primary contributions: i) we define
the problem of defense against data poisoning attacks in
FL, focusing on IoT scenarios marked by non-IID data and
resource constraints; ii) we introduce Federated Learning
Isolation Forest with Robust Aggregation (FLIFRA)1, a scal-
able and adaptive dual-layered framework that synergistically
integrates iForest for local anomaly detection with a DRRA
mechanism to globally enhance resilience against adversarial
attacks; iii) we conduct a rigorous evaluation of our approach
under varying intensities of poisoning attacks using real-
world IoT datasets.

The remainder of the paper is organized as follows.

1Source code available at https://github.com/mulerkal/FLIFRA
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Section II reviews the literature on FL and data poison-
ing, focusing on current mitigation strategies. Section III
details our proposed methods for detecting data poisoning
in FL systems. Section IV presents experimental setups,
while Section V describes results and discussions of the
proposed strategies. Finally, Section VI concludes the paper
and outlines the directions for future research.

II. LITERATURE REVIEW

A. Data Poisoning Attacks In FL

The architecture of FL in IoT-Edge environments spans
multiple domains of IoT applications, including smart trans-
port, healthcare, industrial IoT (IIoT) and smart cities. In
this FL setting, IoT-Edge can include smart sensors, wear-
able devices, as well as industrial machinery that collects
and processes local data to train ML models. Each device
operates independently within its domain, maintaining data
privacy by keeping raw data locally and only sharing model
update gradients or parameters with a central server. The
central server aggregates these local model updates to form
a global model, which is then redistributed to all IoT-Edge
devices for further local training. However, this decentralized
approach exposes the FL system to data poisoning attacks
[11].

In data poisoning attacks, one or more IoT-Edge devices
are compromised, allowing an adversary to inject poisoned
data into local training. For instance, in a smart home
scenario, a compromised device trains its local model on
malicious data and sends tainted updates to the central server.
When these updates are aggregated with benign ones, they
degrade the global model’s performance and introduce bias.
This corrupted global model is then redistributed to all
devices, propagating the attack [13].

B. Poisoning Attack Detection in FL

FL is increasingly vulnerable to data poisoning attacks,
where malicious clients inject corrupted data to degrade
the global model’s performance, posing significant threats
to model integrity, particularly in IoT ecosystems, where
the resource constraints and dynamic conditions inherent to
such environments exacerbate the challenges of detecting and
mitigating attacks [9].

Existing detection strategies can be broadly categorized
into client-side and server-side approaches [14]. Client-side
techniques include iForests [5], which focuses on identifying
outliers by analyzing local training data and algorithms.
However, these methods struggle to detect coordinated at-
tacks that mimic benign behavior, limiting their effectiveness
in real-world scenarios. To address this issue, the approach
described in [6] proposes FL-WBC, which identifies the
attack parameter space and perturbs it during local training
to mitigate long-lasting attack effects. Although promising,
such client-side method often lacks scalability and adaptabil-
ity to dynamic environments.

On the server side, various techniques were proposed to
reduce the influence of malicious updates by filtering or
aggregating model updates from clients. Provenance-based

methods [9], for instance, trace the origin of model updates to
identify malicious contributions, but rely heavily on accurate
provenance data, which is often impractical in resource-
constrained IoT environments. Similarly, FreqFed [15] lever-
ages frequency-domain analysis to detect malicious updates
but assumes stationary data distributions, which restricts its
effectiveness in dynamic IoT environments.

Other server-side approaches, which include client filtering
[8] and clustering-based methods [16], aggregate updates
only from trustworthy clients. For example, the FLAME-
based approach introduced in [17] leverages model clustering
and weight clipping to neutralize adversarial client contri-
butions. Robust aggregation methods, including Krum [10],
Trimmed Mean, and median aggregation [7], have also been
widely adopted to mitigate poisoning attacks by reducing
the influence of outliers. These methods average the least
likely tainted updates, providing resilience against a small
number of Byzantine (adversarial) clients. However, their
effectiveness reduces as the number of compromised clients
increases. Furthermore, the method described in [18] intro-
duces WeiDetect, an approach that uses a trusted validation
set to filter out malicious or low-quality updates before
aggregation. Differently than the previous approaches, Fed-
LSA [19] employs autoencoders to detect poisoned updates
in the latent space, offering a novel approach to identifying
malicious contributions. However, its performance degrades
in non-IID data scenarios, limiting its applicability.

Despite significant progress, challenges persist in detecting
and mitigating data poisoning attacks in FL. Existing meth-
ods often focus exclusively on either client-side detection
or server-side detection, resulting in incomplete defenses.
Client-side approaches may fail to detect sophisticated at-
tacks [6], while server-side methods lack granular insights
into local data distributions [11].

III. PROPOSED METHODOLOGY

This subsection details the client-side iForest anomaly-
based detection, the server-side Dynamic Reputation-based
Robust Aggregation (DRRA), and the hybrid Feder-
ated Learning Isolation Forest with Robust Aggregation
(FLIFRA) approaches, along with their respective algorithms
(Figure 1).

A. Client-Side: iForest Anomaly-based Detection

The first layer of the proposed FLIFRA hybrid detection
approach employs the iForest algorithm to identify anomalies
in model updates. The detailed steps of the algorithm are
described below and outlined in Algorithm 1.

• Step 1: Local application of iForest. After initializing
iForest M with n trees and contamination level η,
each i-th IoT device trains the model locally on the
local dataset Di. Then, the device applies the iForest
algorithm to its model update. The algorithm randomly
selects a feature and a split value to partition the data,
constructing trees where outliers are isolated near the
root due to their uniqueness. This process is repeated
across multiple trees in the ensemble.
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Fig. 1: Architecture of an FL-based data poisoning attack in
IoT-Edge environments.

• Step 2: Anomaly score calculation. For each model
update, iForest calculates an anomaly score s based on
the average path length required to isolate the point in
all trees in the forest. The path length is defined as the
number of edges traversed from the root node to the
terminating node. The score is calculated as:

s(x) = 2
−
E(h(x))

c , (1)

where E(h(x)) is the expected path length of a point x
in the iForest, n is the number of samples, and c(n) is
the average path length of an unsuccessful search in a
Binary Search Tree (BST).

• Step 3: Flagging potentially malicious updates. If a
model update’s anomaly score exceeds a certain thresh-
old, it is considered an outlier and is flagged as poten-
tially malicious; otherwise, it is considered normal. We
employ a dynamic thresholding mechanism to enhance
the detection of malicious activities. The threshold θ is
defined as:

θ = Q1−η(S) ;

S = {s(xj)}|Di|
j=1 , (2)

where Q is the (1− η)-quantile of S , with η indicating
the contamination level and S the set of anomaly scores.
The threshold θ is continuously updated based on the
distribution of anomaly scores over time, utilizing a
rolling-window approach. The filtered dataset D′

i is
constructed as the set of normal samples.

• Step 4: Filtered dataset and anomaly report. The filtered
dataset D′

i is used to train the models at subsequent
iterations. The set Ai of flagged updates, along with
their anomaly scores, are then sent to the central server.

B. Server Side: Dynamic Reputation-Based Robust Aggre-
gation (DRRA)

Performed at the server side, DRRA dynamically adjusts
the weight of updates for each client during the aggregation

Algorithm 1: iForest Anomaly Detection
Input: Local dataset Di, contamination level η, number of

estimators n.
Output: Filtered dataset D′

i.

1 Initialization.
2 Initialize iForest model M with n trees and

contamination η;

3 Step 1: Local application of iForest.
4 Apply M on Di;

5 Step 2: Anomaly score computation.
6 foreach data point xj ∈ Di do
7 s(xj)←M.score(xj);

8 Step 3: Flagging potentially malicious updates.
9 Let S = {s(xj)}|Di|

j=1 ;
10 θ = Q1−η(S);
11 D′

i ← ∅;
12 Ai ← ∅;
13 foreach data point xj ∈ Di do
14 if s(xj) > θ then
15 Label xj as anomaly and append (xj , s(xj))

to Ai;
16 else
17 Label xj as normal and append xj to D′

i;

18 Step 4: Filtered dataset and anomaly report.
19 return Di, Ai

process based on the evolving reputation scores from the
training rounds. The algorithm assigns higher weights to
reliable clients and penalizes those exhibiting malicious
behavior. The details are provided in the following and
illustrated in Algorithm 2.

• Step 1: Reputation score initialization. At the begin-
ning of the training process, all clients are assigned
equal reputation scores Ri(0), where Ri(0) = 1 for
each client i. This uniform initialization assumes no
prior knowledge about client behavior and treats all
clients equally trustworthy. As training progresses, the
reputation scores are dynamically updated based on the
consistency and reliability of the client’s contributions.

• Step 2: Reputation score update. Each client i updates
its reputation score Ri(t+ 1) ∈ [0, 1] at training round
t+ 1, according to:

Ri(t+1) = αRi(t) + (1−α)Si(t), α ∈ [0, 1] (3)

where α is a decay factor controlling the historical
behavior’s influence and Si(t) is a performance score
computed based on the similarity of the client’s update
to the median of all client updates at round t. We
compute Si(t) by measuring the Euclidean distance
between the client’s update Ui(t) and the central model
update Um(t), defined as the component-wise median
of all client updates:

Si(t) = 1− distance(Ui(t), Um(t))

maxj(distance(Uj(t), Um(t)))
, (4)



Algorithm 2: Dynamic Reputation–Based Robust
Aggregation (DRRA)

Input: Client updates U1, . . . , UN , reputations
R1, . . . , RN , decay α, reputation threshold τr ,
small constant ε.

Output: Global update Uglobal, weights w1, . . . , wN .

1 Step 1: Reputation score initialization.
2 foreach Client i, i = 1, . . . , N do
3 Ri(0) = 0;

4 Step 2: Reputation score update.
5 Um ← median(U1, . . . , UN );
6 foreach i = 1, . . . , N do
7 di ← ∥Ui − Um∥2;

8 Dmax ← max
(
di, ε

)
;

9 foreach i = 1, . . . , N do
10 Si ← 1− (di/Dmax);
11 Ri ← αRi + (1− α)Si;

12 Step 3: Weighted aggregation of client updates.
13 foreach i = 1, . . . , N do
14 if Ri ≥ τr then
15 R̃i ← Ri;
16 else
17 R̃i ← 0;

18 wi ← R̃i/
∑N

j=1 R̃j ;

19 Uglobal ←
∑N

i=1 wi Ui;

20 return Uglobal

where: Ui(t) is the update from client i, Um(t) is the
median update, and distance(·, ·) is a metric Euclidean
distance. Clients with updates closer to the median
receive higher scores, while those with significant de-
viations are penalized.

• Step 3: Weighted aggregation of client updates. After
computing the updated reputations Ri(t + 1) for all i,
the server filters the reputation scores by applying the
threshold τr ∈ [0, 1]:

R̃i(t+ 1) =

{
Ri(t+ 1), Ri(t+ 1) ≥ τr

0, Ri(t+ 1) < τr
, (5)

The aggregation weight for client i is then computed
as:

wi(t+ 1) =
R̃i(t+ 1)∑N
j=1 R̃j(t+ 1)

, i = 1, . . . , N, (6)

where N is the total number of clients. Finally, the
global model is updated as:

Uglobal(t+ 1) =

N∑
i=1

wi(t+ 1)Ui(t) . (7)

C. FLIFRA: Hybrid Approach

Our proposed approach combines local anomaly detection
using an iForest with robust DRRA aggregation on the server.
The details are described in Algorithm 3.

Algorithm 3: FLIFRA: Federated Learning Isolation
Forest with Robust Aggregation

Input: Client datasets {Di}Ni=1, contamination η, iForest
trees n, reputation decay α, reputation threshold τr ,
rounds T , initial model M (0), server learning rate
γ, small constant ε.

Output: Robust global model M (T ).

1 M (0) ← initial model;
2 for t = 1 to T do

// CLIENT SIDE: iForest
3 foreach i = 1, . . . , N in parallel do
4 Run Algorithm 1 on Di with (η, n) to obtain

filtered D′
i;

5 Train local model M (
i t) on D′

i, starting from
M (t−1);

6 Ui ←Mi −M (t−1);
7 Send Ui to server;

// SERVER SIDE: DRRA
8 Run Algorithm 2 with inputs {Ui}Ni=1, {Ri}Ni=1,

(α, τr, ε) to obtain global update Uglobal and new
weights {wi};

9 M (t) ←M (t−1) + γ Uglobal;

10 return M (T );

IV. EXPERIMENTS AND EVALUATION

A. Threat Models in FL

In the proposed dual-layer approach, the attacker’s goal
is to compromise the global model by injecting poisoned
updates that both degrade its overall accuracy and implant
a stealth backdoor, causing benign IoT traffic to be mis-
classified as malicious or vice-versa. To accomplish this,
the adversary fully controls one or more compromised IoT
participants, manipulating their local training data and gradi-
ents to upload arbitrary model updates. However, the attacker
cannot intercept or modify honest clients’ contributions and
lacks access to the server’s reputation validation set.

B. Datasets

CIC-IDS2018. The dataset was generated within a simulated
network environment that incorporates realistic traffic from
various applications and services, ensuring its relevance to
modern network infrastructures [20].2

BoT-IoT. The dataset was collected in a controlled envi-
ronment that simulates a diverse IoT network with smart
thermostats, webcams, motion sensors, and connected home
appliances. Data includes benign traffic, representing legit-
imate activities of the IoT network, and malicious traffic
generated through various cyberattack scenarios [21].3

UNSW-NB15. The dataset is a contemporary network intru-
sion benchmark developed at the Australian Center for Cyber
Security (ACCS).4 It contains both benign and malicious

2https://www.unb.ca/cic/datasets/ids-2018.html
3https://research.unsw.edu.au/projects/bot-iot-dataset
4https://research.unsw.edu.au/projects/unsw-nb15-dataset

https://www.unb.ca/cic/datasets/ids-2018.html
https://research.unsw.edu.au/projects/bot-iot-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset


TABLE I: Training and testing samples with class details
used in the experiments for the considered datasets.

Dataset
Num. of samples

Classes
Training Test

CIC-IDS2018 1,476,912 369,229

8 (Benign, DoS, DDoS,
Brute Force, Botnet, Web
Attacks, Infiltration, SQL
Injection)

BoT-IoT 422,766 105,692
5 (Benign, Scan, DDoS,
Reconnaissance, Theft)

UNSW-NB15 175,341 82,332

9 (Fuzzers, Analysis,
Backdoors, DoS, Exploits,
Generic, Reconnaissance,
Shellcode, Worms)

network traffic across a range of recent attack types. The
number of samples and classes used in the experiment is
shown in Table I.

C. Data Preprocessing

The preprocessing of the three considered datasets ensures
that the data is clean, consistent, and suitable for the pro-
posed approach. In particular, missing and duplicate values
were removed and nonessential features were discarded.
Categorical features, including protocols and attack types,
were converted to numerical values using label encoding
for efficient processing. Continuous features, including flow
duration and packet length, were normalized using the Min-
Max scaling method to standardize values between 0 and 1,
thereby aiding model convergence during training. Feature
extraction was performed to reduce dimensionality, with key
features selected based on information gain and entropy
rankings to retain critical attributes without compromising
accuracy [22].

D. Dataset Distribution

We use 80% of each dataset for training and reserve the re-
maining 20% for testing. In our FL framework, we distribute
the datasets across multiple participant nodes to approximate
realistic non-IID conditions. Each node receives a distinct
subset of samples, characterized by varying proportions of
benign versus malicious traffic as well as the presence or ab-
sence of specific attack types. This allocation strategy mirrors
operational environments, where individual organizations or
network segments encounter unique threat landscapes. To
generate these heterogeneous data distributions, we employ
a Dirichlet distribution, a widely recognized method in the
FL literature for creating skewed multivariate data partitions
[23]. Through this approach, the local data at each client
node exhibits statistical properties representative of real-
world network scenarios, thereby enhancing both the fidelity
and robustness of our empirical evaluations.

E. Model Architecture

For this study, we have designed a CNN architecture
specifically tailored to detect data poisoning attacks in FL
settings within IoT environments. The proposed model in-
tegrates key features to address the unique challenges of

IoT networks. It comprises multiple convolutional layers
for feature extraction, followed by pooling layers to reduce
dimensionality and capture essential patterns. Additionally,
dropout and batch normalization techniques are incorporated
to enhance generalization and robustness.

F. Hyperparameters

In this paper, CNN-based models were trained with a
client-side batch size of 64, utilizing the Adam optimizer and
categorical cross-entropy loss for multi-class classification.
To address non-IID data heterogeneity, client-specific hyper-
parameters, including local learning rates (adaptively tuned
per client), local epochs, and dropout rates, were optimized
to balance performance and generalization. ReLU activation
in hidden layers enabled non-linear feature extraction, while
SoftMax at the output layer provided probabilistic class
assignments. On the server side, a minimum of 100 clients
participate per training round to ensure statistical reliability.
To combat overfitting, early stopping (based on validation
loss divergence) and dropout regularization were integrated.

G. Baselines

To evaluate the performance of our model in detecting
data poisoning attacks, we compared it with a baseline and
analyzed four widely recognized aggregation techniques in
the literature: Trimmed Mean [7], Krum [10], DRRA, Wei-
Detect [18], and standard FedAvg [1]. These techniques were
selected for their demonstrated effectiveness in mitigating
Byzantine attacks and ensuring robust model aggregation in
FL scenarios.

H. Evaluation Metrics

We use accuracy, precision, recall, true positive rates
(TPR), false alarm rates (FAR), and F1 scores as evalua-
tion metrics to evaluate the effectiveness of the proposed
detection method.

V. RESULTS AND DISCUSSION

This section provides a comprehensive analysis of the
results, including the model’s performance under varying
poisoning rates, convergence analysis across communication
rounds, the impact of dataset heterogeneity, sensitivity anal-
ysis, and the computational and communication overhead of
the proposed approach.

A. Varying Poisoning Attack Intensities

In this experiment, poisoning client rates of 10%, 20%,
30%, and 40% were selected to evaluate the resilience of
the framework against different levels of data poisoning in
FL. These rates span a range of attack scenarios from mild to
severe, thus providing insights into the model’s robustness.
Similar approaches have been adopted in previous studies
such as [5], which used 10% and 30% poisoning rates,
and [24], which varied the number of compromised clients
to simulate different poisoning intensities. Additionally, in
the approaches described in [11], [18], the authors explored
poisoning rates up to 50%, further supporting this approach



TABLE II: Impact of poisoning attack intensity on precision and F1-score values across the considered datasets.

Dataset Int.(%) FedAvg Krum Trimmed Mean DRRA WeiDetect FLIFRA

Prec. F1 Prec. F1 Prec. F1 Prec. F1 Prec. F1 Prec. F1

CIC-IDS2018

10 93.8 ± 1.2 94.0 ± 1.1 95.7 ± 1.0 96.0 ± 0.9 95.0 ± 1.1 95.2 ± 1.0 96.8 ± 0.8 97.0 ± 0.8 93.2 ± 0.6 93.0 ± 0.5 98.0 ± 0.7 98.1 ± 0.7
20 91.5 ± 1.6 91.8 ± 1.5 94.5 ± 1.2 94.6 ± 1.2 93.2 ± 1.3 93.4 ± 1.3 95.8 ± 1.0 95.9 ± 1.0 92.9 ± 0.3 92.8 ± 0.8 97.3 ± 0.9 97.4 ± 0.9
30 88.9 ± 2.1 89.2 ± 2.0 91.6 ± 1.8 91.8 ± 1.7 90.4 ± 2.0 90.5 ± 1.9 94.2 ± 1.6 94.3 ± 1.5 92.8 ± 1.1 92.4 ± 0.6 96.0 ± 1.2 96.1 ± 1.2
40 85.5 ± 2.6 85.7 ± 2.5 89.1 ± 2.3 89.3 ± 2.2 87.6 ± 2.4 87.8 ± 2.3 92.2 ± 1.9 92.3 ± 1.8 92.8 ± 0.9 92.5 ± 0.5 94.8 ± 1.6 94.9 ± 1.5

BoT-IoT

10 91.8 ± 1.3 92.0 ± 1.2 93.5 ± 1.1 93.7 ± 1.0 92.8 ± 1.1 93.0 ± 1.1 95.0 ± 0.9 95.1 ± 0.9 91.5 ± 0.3 91.2 ± 1.1 96.3 ± 0.8 96.4 ± 0.8
20 88.5 ± 1.9 88.8 ± 1.8 90.8 ± 1.6 90.9 ± 1.5 90.0 ± 1.6 90.1 ± 1.6 92.8 ± 1.2 92.9 ± 1.2 91.2 ± 0.7 91.0 ± 1.0 94.8 ± 1.0 94.9 ± 1.0
30 85.5 ± 2.4 85.7 ± 2.3 87.8 ± 2.1 87.9 ± 2.0 87.3 ± 2.2 87.4 ± 2.1 90.8 ± 1.7 90.9 ± 1.6 91.0 ± 1.0 90.8 ± 1.2 94.0 ± 1.3 94.1 ± 1.3
40 82.5 ± 2.9 82.7 ± 2.8 84.8 ± 2.6 84.9 ± 2.5 83.8 ± 2.7 83.9 ± 2.7 89.3 ± 2.0 89.4 ± 2.0 90.6 ± 0.7 90.4 ± 0.9 92.8 ± 1.8 92.9 ± 1.8

UNSW-NB15

10 92.8 ± 1.0 92.9 ± 1.0 94.3 ± 0.8 94.4 ± 0.8 93.8 ± 0.9 93.9 ± 0.9 95.8 ± 0.7 95.9 ± 0.7 94.2 ± 0.9 93.9 ± 1.0 96.8 ± 0.6 96.9 ± 0.6
20 90.2 ± 1.4 90.3 ± 1.4 91.8 ± 1.2 91.9 ± 1.2 91.3 ± 1.3 91.4 ± 1.3 93.8 ± 1.0 93.9 ± 1.0 94.0 ± 1.0 93.9 ± 0.2 95.8 ± 0.8 95.9 ± 0.8
30 87.7 ± 1.8 87.8 ± 1.8 89.3 ± 1.5 89.4 ± 1.5 88.8 ± 1.6 88.9 ± 1.6 92.3 ± 1.3 92.4 ± 1.3 93.8 ± 1.0 93.4 ± 1.2 94.8 ± 1.0 94.9 ± 1.0
40 84.8 ± 2.2 84.9 ± 2.2 86.8 ± 2.0 86.9 ± 2.0 86.3 ± 2.1 86.4 ± 2.1 89.8 ± 1.7 89.9 ± 1.7 93.6 ± 0.7 93.3 ± 0.4 92.8 ± 1.5 92.9 ± 1.5

Note. All values as Mean ± Std. dev. (Prec.: Precision, F1: F1-score).

(a) CIC-IDS2018 (b) BoT-IoT (c) UNSW-NB15

Fig. 2: Detection accuracy (%) of baseline and proposed methods across poisoning ratios (10%− 40%).

for assessing the impact of adversarial influence on model
performance.

The results presented in Table II and Figure 2 show
a consistent trend in all the considered datasets, with the
precision of detection and the F1 score decreasing as the
intensity of the poisoning attack increases. In particular, the
FedAvg shows significant performance degradation, espe-
cially at higher poisoning rates. Robust aggregation methods,
Krum, WeiDetect, and Trimmed Mean, display improved
resilience; however, they still experience notable accuracy
losses under severe attack conditions. In contrast, DRRA
achieves higher accuracy than both FedAvg and traditional
robust aggregators, indicating its effectiveness in mitigating
the influence of poisoned updates. In particular, the proposed
FLIFRA approach, which integrates iForest-based filtering
on the client side with DRRA, consistently outperforms all
other methods. Across varying poisoning intensities, the pro-
posed method not only attains the highest detection accuracy
but also exhibits lower variance, as evidenced by the smaller
standard deviations. This enhanced performance highlights
the effectiveness of the dual-layer defense mechanism in
countering data poisoning attacks in federated learning sce-
narios.

B. Convergence and Communication Round Analysis

The results illustrated in Figure 3 reveal distinct conver-
gence patterns among the evaluated methods: under mild
poisoning (10%), all methods tend to converge gradually;

however, the proposed FLIFRA quickly reaches a high
accuracy level outpacing conventional methods of FedAvg,
Krum, and Trimmed Mean. As the intensity of poisoning
increases 40%, the convergence gaps become more pro-
nounced. Notably, the FLIFRA method not only achieves
a higher steady-state accuracy but also exhibits reduced
variance across communication rounds. For example, the
results of the BoT-IoT dataset (see Figure 3) demonstrate
that while the baseline methods show slower convergence
and higher fluctuations, the FLIFRA defense rapidly stabi-
lizes, underscoring its resilience even under severe poisoning
scenarios.

The convergence analysis indicates that the proposed
FLIFRA method offers significant advantages in terms of
convergence speed and stability compared to traditional ro-
bust aggregation techniques. The empirical evidence suggests
that integrating client-side anomaly detection with server-
side dynamic reputation-based aggregation effectively miti-
gates adversarial influences, ensuring higher final detection
accuracy and more consistent performance over time.

C. Effect of the Dataset Heterogeneity

To simulate realistic non-IID conditions in FL, we partition
the datasets using a Dirichlet distribution with three distinct
concentration parameters (K-values). In our study, K =
1.0 represents a near-IID scenario, while K = 0.5 and
K = 0.1 correspond to progressively higher levels of data
heterogeneity.



(a) CIC-IDS2018 p = 10% (b) CIC-IDS2018 p = 40% (c) BoT-IoT p = 10%

(d) BoT-IoT p = 40% (e) UNSW-NB15 p = 10% (f) UNSW-NB15 p = 40%

Fig. 3: Convergence behavior under poisoning attacks with poisoning rates of 10% and 40%.

Table III summarizes the detection accuracy for each
method with different K values. Under the low heterogeneity
condition (K = 1.0), all methods exhibit robust performance,
with the FLIFRA approach consistently achieving the highest
accuracy. As the K value decreases, indicating more skewed
data distributions, a decrease in precision is observed for all
methods. The proposed FLIFRA method is more resilient to
the adverse effects of data heterogeneity than conventional
aggregation strategies. By combining client-side anomaly
detection with dynamic reputation-based aggregation, the
hybrid approach not only maintains high detection accuracy
under near-IID conditions but also exhibits minimal perfor-
mance loss as the data becomes increasingly non-IID.

D. Sensitivity Analysis

We conducted a sensitivity by varying the iForest con-
tamination parameter η over the set {0.01, 0.02, 0.05}. For
each η, we ran FL experiments under various data-poisoning
scenarios and recorded the overall TPR and FAR. At η =
0.05, we achieved the highest detection sensitivity (TPR
> 95%) at the expense of more false alarms (FAR < 3%); at
η = 0.02, we observed a balanced performance with strong
detection (TPR > 90%) and moderate false alarms (FAR
< 1.5%); and at η = 0.01, we minimized false alarms
(FAR < 1%) a decrease in detection rate (TPR ≈ 85%).
These results indicate that setting η between 0.02 and 0.05
offers a tunable trade-off between sensitivity and specificity,
delivering robust filtering against poisoning attacks.

E. Computational and Communication Overhead

The results presented in Table IV illustrate that although
the proposed FLIFRA method incurs in higher computational
overhead per communication round, approximately 2.2 min
for each round on average for the BoT-IoT dataset compared
to 1.2 min for FedAvg, the additional processing cost is offset

by a faster convergence speed. For example, the FLIFRA
approach converges in about 40 rounds on BoT-IoT, whereas
FedAvg requires approximately 50 rounds. Similar trends
are observed for CIC-IDS2018 and UNSW-NB15, where the
hybrid method consistently converges in fewer rounds despite
its higher computational expense per round. This overhead-
benefit trade-off underscores the effectiveness of the FLIFRA
approach in enhancing detection performance and robustness
against poisoning attacks.

From a scalability perspective, although the iForest filter-
ing on the client side of the hybrid method and the repu-
tation computation on the server side introduce additional
computation and communication overhead, these costs scale
moderately with the number of clients and the dataset size.

VI. CONCLUSION

This paper proposed a resilient FL framework to address
the critical challenge of data poisoning attacks in IoT security
systems. The proposed FLIFRA approach integrates local
anomaly detection using iForest with a global DRRA to
improve robustness against sophisticated adversarial attacks.
The framework demonstrated superior resilience and scal-
ability through an extensive evaluation of real-world IoT
data sets, including CIC-IDS2018, BoT-IoT, and UNSW-
NB15, compared to the baseline methods FedAvg, Trimmed
Mean, Krum, DRRA, and WeiDetect. The FLIFRA approach
outperformed these methods in mitigating poisoning attacks,
achieving higher accuracy and stability at varying levels
of malicious client participation (10% − 40%). The results
demonstrate the effectiveness of combining local anomaly
detection with dynamic global aggregation. iForest efficiently
filters suspicious updates at the client level, preventing
compromised data from reaching the server, while DRRA
penalizes malicious clients and prioritizes reliable updates
through a reputation-based strategy. This dual-layer defense



TABLE III: Impact of data heterogeneity (Dirichlet K-values) on detection accuracy for the considered datasets.

Dataset K-value
Detection accuracy (%)

FedAvg Krum Trimmed Mean DRRA WeiDetect FLIFRA (proposed)

CIC-IDS2018
K = 1.0 95.0 ± 1.0 96.5 ± 0.8 96.0 ± 0.9 97.2 ± 0.7 93.06 ± 1.0 98.5 ± 0.6
K = 0.5 92.0 ± 1.5 94.0 ± 1.2 93.5 ± 1.3 95.5 ± 1.0 90.09 ± 2.0 97.0 ± 0.8
K = 0.1 88.0 ± 2.0 90.0 ± 1.8 89.5 ± 1.9 92.0 ± 1.5 89.64 ± 1.5 95.0 ± 1.2

BoT-IoT
K = 1.0 93.0 ± 1.1 94.2 ± 0.9 94.0 ± 1.0 95.0 ± 0.8 93.12 ± 1.6 96.2 ± 0.7
K = 0.5 89.0 ± 1.7 91.0 ± 1.4 90.5 ± 1.5 93.0 ± 1.2 92.81 ± 1.0 95.0 ± 1.0
K = 0.1 85.0 ± 2.1 87.0 ± 1.9 86.5 ± 2.0 90.0 ± 1.5 90.08 ± 1.0 93.0 ± 1.3

UNSW-NB15
K = 1.0 94.0 ± 1.0 95.0 ± 0.8 94.5 ± 0.9 96.0 ± 0.7 92.80 ± 1.0 97.5 ± 0.6
K = 0.5 91.0 ± 1.4 92.0 ± 1.2 91.5 ± 1.3 93.5 ± 1.0 90.98 ± 1.1 95.0 ± 0.8
K = 0.1 88.0 ± 1.8 89.0 ± 1.5 88.5 ± 1.6 91.0 ± 1.3 88.22 ± 1.2 93.0 ± 1.0

Note. All values are presented as Mean ± Std. dev. Lower K-values correspond to higher data heterogeneity.

TABLE IV: Computational overhead and convergence speed.

Method
CIC-IDS2018 BoT-IoT UNSW-NB15

Time-Rounds Time-Rounds Time-Rounds

FedAvg 1.3 ± 0.1 57 1.2 ± 0.1 50 1.2 ± 0.1 51
Krum 1.6 ± 0.2 51 1.5 ± 0.2 48 1.5 ± 0.2 48
Trimmed Mean 1.7 ± 0.2 46 1.6 ± 0.2 47 1.6 ± 0.2 47
DRRA 1.9 ± 0.2 48 1.8 ± 0.2 45 1.8 ± 0.2 45
WeiDetect 2.4 ± 0.1 53 2.3 ± 0.1 46 2.2 ± 0.2 42
FLIFRA (proposed) 2.3 ± 0.3 39 2.2 ± 0.3 40 2.2 ± 0.3 40

Note. Values are reported as Mean ± Std. Dev., with average computation
time (min/round) and rounds to convergence.

significantly enhances the robustness of the global model,
particularly in heterogeneous and non-IID IoT environments.
Moreover, the proposed approach ensures efficient conver-
gence, making it well-suited for resource-constrained IoT
systems that demand both computational efficiency and re-
silience.

Future works will consider a theoretical convergence anal-
ysis, exploring additional attack scenarios and varying inten-
sities, evaluating the proposed dual-layer defense in larger
and more heterogeneous federated networks, and investigat-
ing real-time, privacy-preserving deployment strategies.
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