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1 INTRODUCTION

THE Discrete Cosine Transform (DCT) and Inverse
Discrete Cosine Transform (IDCT) have been widely

used in digital signal and image processing [3]. The two-
dimensional (2D) DCT/IDCT is a standard data compres-
sion/decompression technique for image coding standards
such as H.261, MPEG-1, and MPEG-2.

A popular approach for implementing the 2D DCT/IDCT
is the row-column decomposition method [3], [4], in which
the 2D transform is computed by applying the 1D DCT/IDCT
by rows and, then, by columns. The 1D DCT/IDCT may
be computed either by using a direct approach based on
the Fast Cosine Transform (FCT) method [5], [6], [7] or an
indirect strategy evaluating the DCT by means of the
Discrete Fourier Transform [8], [9]. In [10], high perfor-
mance is achieved by using efficient on-line arithmetic and
an FCT algorithm. Even though the indirect approach
usually requires a higher number of operations than the
FCT technique, it has been shown [11] that efficient
algorithms can be obtained by transforming two input data
streams simultaneously. These approaches need to trans-
pose the intermediate results by using a memory array, thus
leading to a high circuit complexity and a long time for
loading and unloading.

Another approach was recently proposed to directly
compute the 2D DCT [12], [13], [14], without decomposing
it into two successive 1D DCTs. Although this approach

requires the least number of multipliers and adders, the
structure of the resulting architecture is very complicated
and the interconnection complexity is high.

An alternative technique is based on the use of systolic
architectures [2], [15], [16], [17], [18], [19], [20]. In this case,
the transformation is obtained by applying the 1D DCT
twice. In [15], [16], [17], a transpose memory is necessary to
reorder the data between the two 1D DCT computations,
leading to a large circuit complexity. In [2], [18], [19], [20],
unified architectures are presented to implement both the
DCT and the IDCT without any transpose memory since
the intermediate results stored in the array cells are in the
order suited for the subsequent 1D transposition. These
architectures consider bit-parallel and bit-serial data
presentation and manipulation. Bit-parallel processing
leads to a high-speed structure having a high circuit
complexity; bit-serial processing reduces both the perfor-
mance and the complexity.

In this paper, we propose an intermediate approach that
allows us to design an architecture having throughput and
circuit complexity between the extremes of the previous
cases. We use bit-serial data interfaces at the borders of each
processing element in the array processor to minimize the
interconnection complexity. This creates a modular struc-
ture that can be easily expanded by cascading chips each
containing a limited number of processors. Also, it allows
us to easily introduce fault tolerance features such as
reconfiguration [21], due to the limited number of inter-
connections that need to be rerouted. Pipelined serial-
parallel execution of the arithmetic operations limits the
performance degradation resulting from the use of serial
data interfaces. Similar approaches to the design of complex
arithmetic structures have been successfully applied to the
implementation of multipliers and convolvers [22] as well
as of FFT processors [23].

In Section 2, the DCT and the IDCT transforms are briefly
summarized and the high-level structure of a unified
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processor computing both of them is shown. In Section 3,
the bit serial-parallel implementation of this architecture is
presented and analyzed. Section 4 evaluates the through-
put, the latency, and the circuit complexity.

2 THE DCT/IDCT TRANSFORMS

Let x�n� (n � 0; 1; . . .N ÿ 1) be a time domain data sequence
and y�k� (k � 0; 1; . . .N ÿ 1) be the corresponding trans-
form-domain sequence. The Discrete Cosine Transform and
the Inverse DCT are defined by [3]:
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is a simple scaling of the input sequence, we ignore the
scaling factor and consider the normalized DCT/IDCT
computation. Equation (1) can be rewritten in matrix form
as �yN� � �CN ��xN�, where �xN� and �yN� are N-dimensional
input and output column vectors, respectively, and �CN � is
the N �N DCT coefficient matrix where

�CN �kn �
1��
2
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cos �2n�1�k�
2N ; otherwise

(
for k; n � 0; 1; . . .N ÿ 1:
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For the computation of the 2D DCT, the conventional row-
column approach is generally used. The row-column
approach can be expressed in matrix form as:

�ZN � � �CN ��XN ��CN �T : �4�
Equation (4) shows that 2D N �N DCT is computed by
N N-point DCTs along the rows of the input
�XN ���YN � � �XN ��CN �T �, followed by N N-point DCTs along
the columns of the matrix obtained from the row transform
��ZN � � �CN ��YN ��. Similarly, the 2D IDCT computation can
be expressed in matrix form as:

�XN � � �CN �T �ZN ��CN �: �5�
Using the row-column approach, the systolic array

performs two consecutive matrix multiplications in
sequence. Depending on which coefficient matrix is
provided first (�CN � or �CN �T ), the 2D DCT or the 2D
IDCT computation can be selected and, thus, the

operation in the systolic array is identical for the 2D
DCT and the 2D IDCT.

Definitions of two types of semisystolic arrays for the
multiplication of two N �N matrices have been proposed
by Kung [24]. Many other examples are available in the
literature, e.g., in [25], [26]. An array is semisystolic if the
output data are not produced in the boundary cells of the
array (Type 1) or if input data need to be preloaded into the
cells of the array (Type 2). The Type 1 array, the Type 2
array, and their PE structures are shown in Fig. 1 for matrix
multiplication C = AB with N = 4, where Hin and Hout

represent the horizontal input and the horizontal output,
respectively, while Vin and Vout represent the vertical input
and the vertical output, respectively. Rij is a value saved in
a register of the (i, j)th PE.

In the Type 1 semisystolic array shown in Fig. 1a, each
PE performs a multiply-accumulate operation where the
horizontal and the vertical inputs are multiplied and added
to the register value and the result is saved in the register.
The initial value of the register is zero. Hence, in N cycles,
each PE computes an inner product of a row of the
horizontal input and a column of the vertical input. The
latency is defined as the time from the first data entry until
the output data is available. Cycles per datum (CPD) is
defined as the number of clock cycles to compute each point
of the transform which is an indication of the average
latency. This N �N systolic array has a latency of 3N ÿ 2
cycles and a CPD of N, where the cycle time is the time to
perform a multiply-accumulate operation. This indicates
that it takes 3N ÿ 2 cycles to compute the first result and
N cycles for each subsequent result. This array is semi-
systolic since the output data is not produced in the
boundary cells of the array. This array has overhead for the
output to be shifted out of the array.

In the Type 2 semisystolic array shown in Fig. 1b, to
compute C = AB, each component of matrix B is preloaded
into the array with one element of the matrix in a register
within each PE, while matrix A is fed into the array. Each PE
multiplies the horizontal input times the register value and
adds this to the vertical input to produce the vertical
output. The inner product of a column of the input matrix
and a column of the stored matrix is computed every
N cycles.

From Roziner and Karpovsky's point of view [27], there
are two space coordinates, �n1; n0�, in the index set and we
have three variables A, B, and C to move along the
coordinate axes. There are three possibilities corresponding
to the case when one of the variables does not move in the
array. In the Type 1 semisystolic array, A moves by n0, B
moves by n1, and C is accumulated in the PEs. In the Type 2
semisystolic array, B (input data) does not move; this means
it is preloaded into the array, A moves by n0, and C moves
by n1.

Based on these two types of semisystolic arrays, a true
systolic array for two-dimensional DCT was presented
previously [2]. The key idea is to combine the two
semisystolic arrays for the matrix multiplication into one
array so that input and output move along axes and the
intermediate result does not move. In this way, the systolic
array does not require any transposition, which is required

1298 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 12, DECEMBER 2000



in other architectures implementing the row-column ap-

proach to 2D transform computation.
In the systolic array, the first 1D DCT (�YN � � �XN ��CN �T )

is computed using the Type 1 semisystolic method and then

�YN �n1k0
are computed and saved in the PEs. Using these

results, the second 1D transform (�ZN � � �CN ��YN �) is

computed using the Type 2 semisystolic method of matrix

multiplication. In this systolic array for the 2D DCT, �XN �
(input data) and �CN � (the coefficient matrix for the second

1D transform) move by n0, while �CN �T (the coefficient

matrix for the first 1D transform) and �ZN � (output data)

move by n1. Only �YN � (the intermediate spectrum) does not

move.
The systolic array and the PE structure for N = 4 is shown

in Fig. 2 and Fig. 3, respectively, where

cji �
1��
2
p ; for j � 0

cos �2i�1�j�
2N ; otherwise:

(
PEs in Fig. 3 perform two different functions, alternately:

For the first N cycles, the PE operates as a Type 1

semisystolic array; for the next N cycles, it operates as a

Type 2 semisystolic array; then, the process repeats; etc. At

the system level, this array is a true systolic array since it

does not require any preloading of input data and it

generates output data only from the bottom boundary cells

of the array. A detailed explanation of this systolic array is
found in [2].

For the 2D IDCT computation in (5), �YN � � �ZN ��CN � is

performed first and then �XN � � �CN �T �YN � is performed.

Once the proper coefficient matrix is selected, the remaining

processing is identical for the 2D DCT or the 2D IDCT

computation. We select the 2D DCT or the 2D IDCT

computation by providing an external control signal for

mode selection.

3 THE SERIAL-PARALLEL ARCHITECTURE

A detailed serial-parallel architecture implementing the
DCT/IDCT array processor introduced in Section 2 is
shown in Fig. 4. The external interfaces to the individual
PEs are serial to minimize the number of interconnections.
The internal data manipulation is serial-parallel to increase
the speed of the computation with respect to the purely
serial case. Data are presented and treated starting from the
least significant bit.

The H shift register on the horizontal interconnection
and the H register are used to convert the data to a bit-
parallel format within each PE during both phases of the PE
operation (Type 1 and Type 2). The V shift register on the
vertical interconnection provides delay for PE synchroniza-
tion. Data and possible computation results are propagated
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on a diagonal wavefront from the top left PE to the bottom

right PE of the array.
The partial product generator, the carry-save adder, the

hardwired rotator, the hardwired shifter, the sum register,

and the carry register implement the serial-parallel multi-

plication used during the first and the second PE phases.
Addition to the results of the previous multiplications in

the first PE phase (as required by the DCT and the IDCT

algorithms) is performed by the carry-save adder since the

partial result of the previous multiplication is held in the

sum and carry registers as the initialization values for the

subsequent multiplication.
Note that no carry propagation is necessary during the

whole first PE phase since partial results are accumulated.

Conversely, to reuse the same serial-parallel multiplier

during the second PE phase, a serial presentation of the

result computed in the first PE phase is required.
At the end of the first PE phase, the result (held in sum

and carry registers) is truncated and moved to the sum and

the carry shift registers to complete the carry propagation

and to generate a serial result for the multiplications in the

second PE phase. These shift registers, the serial adder SA1,

and the master-slave memory element D1 perform this

operation during the first multiplication in the second

PE phase. The R shift register holds and recirculates the

result of the first PE phase during the subsequent multi-

plications of the second phase.
At the end of each multiplication in the second PE phase,

the sum and the carry registers hold the result that needs to

be added to the partial result coming from the PE in the

same column of the previous row. The product is therefore

truncated and moved in the sum and in the carry shift

registers as in the last multiplication of the first PE phase.

Serial adder SA1 and memory element D1 provide carry

propagation within the multiplication result, while serial

adder S2 computes the accumulated partial summation that

must be propagated to the PE in the same column in the

subsequent row.
Since the multiplier and the multiplicand of the first

phase are m bit two's-complement fixed-point numbers, the

result generated by the multiplication is 2mÿ 1 bits long.

The addition of the results of the first phase is a 2mÿ 1�
ceil�log2N� number. Truncation of the m least significant

bits leads to operands in the second phase having mÿ 1�
ceil�log2N� bits, while the multipliers are still m-bit long.

The result of the multiplication in the second phase is

therefore 2mÿ 2� ceil�log2N� bits long and is truncated to

mÿ 2� ceil�log2N� bits by removing the m least significant

bits. By adding N of these numbers in the second phase, we

produce a final result having mÿ 2� 2ceil�log2N� bits.
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The H shift register on the horizontal interconnection
holds the data for the interprocessor data transfer along the
same row of the array. Its detailed structure is given in
Fig. 5. It is a regular shift register composed of master-slave
memory elements: One bit is propagated on each clock
cycle. The clock signal controlling the shift register, as well
as the whole PE, is denoted as �1. The H shift register is
m-bits long.

When a datum from the horizontal input has been
loaded into the H shift register, it is moved in the H register
to allow its serial propagation to the subsequent PE in the
same row. The H register preserves the data for the
operations within the PE in parallel form. This register is
a regular latch composed of m memory elements, as shown
in Fig. 5. To avoid delay when storing the horizontal datum
in the H register from the H shift register, storing in the
H register is controlled by the signal �2. It becomes active
after m cycles of signal �1, on the same edge of �1, which
stores the datum in the slave elements of the H shift
register. As a consequence, each new datum stored in the H
shift register is moved both to the H shift register and to the
H register, simultaneously.

The V shift register on the vertical interconnection has a
similar role to that of the H shift register. It is an m-bit
master-slave shift register, controlled by clock signal �1. For
correct operation of the serial-parallel multiplier, the multi-
plicand is first fed in the PE horizontally, then (when the
whole multiplicand is in the PE) the multiplier is fed
vertically during the first PE phase. During the second PE
phase, the multiplicand is fed horizontally; the multiplier is
already stored in the PE, but in a redundant form which is
not suitable for direct serial-parallel multiplication. To reuse
the same multiplier of the first iteration without wasting
cycles for the carry propagation, it is more efficient to
ªparallelizeº the incoming serial multiplicand during the
second PE phase, while the redundant (sum and carry)

parallel representation of the multiplier is ªserializedº
while carries are propagated.

The V' shift register is used during the second
PE phase to increase the length of the V shift register.
During the second phase 2ceil�log2N� ÿ 2 additional bits
are required to accommodate the result, as discussed
above. The V' shift register is controlled by the clock
signal �1. Multiplexer M2 provides bypassing during the
first PE phase. Multiplexer M3 propagates the vertical
input during the first PE phase and the result is computed
by the PE during the second PE phase.

The partial product generator is a circuit that produces
the partial product of the multiplicand stored in the
H register by the ith bit of the multiplier arriving from the
multiplexer M1, according to the traditional arithmetic rules
for serial-parallel multiplication of two numbers in the
two's-complement representation. During the first PE phase,
the content of the H register is multiplied by the bit coming
from the PE in the same column in the previous row
through the vertical interconnection. During the second
phase, the multiplier bit is the ith bit of the result generated
by the first PE phase.

The ith partial product of the current multiplication is
added to the accumulated result generated by the previous
iterations and stored in the sum and the carry registers.

To assure proper alignment of the partial product bits
with respect to the stored result, the partial product should
be shifted left by i bits in the current multiplication. To
avoid a variable shifting, we have chosen to have the partial
product in a standard position and to downshift the result
stored in the sum and in the carry registers. In this case, the
shifting is always by one bit at each iteration; as a
consequence, it can be implemented as an hardwired
shifting without any extra hardware.

The carry register is shifted by one bit by the hardwired
shifter shown in Fig. 6. Since there is no carry having weight
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20, the shifting does not lose any of the stored result. A zero

must be introduced in the most significant position of the

shifted carry datum since there was no carry in above the

most significant digit in the carry register.
To avoid truncation of the result computed in the

previous iteration (truncation must be performed only at

some specific points of the computation to guarantee a

given precision), the least significant bit of the sum register

is rotated to the most significant position so that it can be

saved again in the sum register itself. Rotation is shown in

Fig. 7. The hardwired shifter and the hardwired rotator

accommodates operands having 2mÿ 1� ceil�log2N� bits.
The carry save adder consists of 2mÿ 1� ceil�log2N�

standard full adders, reducing the three inputs (the rotated
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sum register and the shifted carry register generated by the
previous iteration and the current partial product) to two
values that are stored in the sum and carry registers.

The sum and carry registers each consist of 2mÿ 1�
ceil�log2N� master-slave memory elements. Storing in the
master and slave elements is controlled by the control signal
�1. Their structure is shown in Figs. 8 and 9, respectively.

The result stored in the sum register is shifted right by
the hardwired rotator, leaving unused room at the most
significant positions. This insures that there is no inter-
ference between the most significant part of the result that is
progressively moving right and the saved least significant
part. In other words, it can never happen that a carry
propagates from the most significant bit of the result to the
least significant bit of the result itself that is temporarily
saved on the unused left side of the sum register.
Introducing a zero at the most significant position of the
hardwired shifter insures that the bits saved in the left part
of the sum register are preserved at their original value. The
boundary between the temporary storage area in the sum
register and the active computing area is progressively
moving to the right at each iteration during the individual
multiplication.

At the end of the m iterations required to generate the
complete product of the multiplicand stored in the
H register by the multiplier arriving from the vertical
interconnection, the m most significant positions of the sum
register hold the m least significant bits of the result, while
the remaining positions contain the most significant part of
the result. Similarly, the carry register has zeroes in the m
most significant positions and the possible carries of the
most significant part of the result in the least significant
positions.

The result stored in the sum and carry registers is used as
the initialization value for the subsequent multiplication of
the first PE phase, i.e., we are using these registers as
accumulators. As a consequence, before starting the sub-
sequent multiplication, it is necessary to align the accumu-
lated result stored in the sum and carry registers. In each of
these registers, this is accomplished by swapping the
positions holding the most and the least significant parts
of the result. Swapping is performed by multiplexing the
outputs of the carry save adders directly and by controlling

the storing operation with control signal �3, as shown in
Figs. 8 and 9. This signal is active only during the last
computational cycle related to the last digit in each
multiplication except the last one.

Since the hardwired rotator and the hardwired shifter
are always present and apply the rotation and shifting
during the first iteration of the subsequent multiplication,
we need to accommodate this in the interconnections for the
swapping operation. In particular, we need to swap the
contents of the sum register by leaving the most significant
bit of the result in the least significant position of the sum
register, while the m least significant bits of the result are
moved from the most significant positions of the sum
register to the positions starting from weight 21; the
remaining most significant bits of the result are shifted in
the most significant positions. Thus, the hardwired rotator
presents the accumulated summation to the subsequent
multiplication since it rotates to the right side the value
swapped as described above. Processing is similar for the
carry register, except that the least significant positions are
filled by zeroes instead of swapping the zeroes present in
the most significant part.

At the end of the first PE phase, i.e., at the end of all
multiplications in the first phase, the outputs of the carry
save adder do not need to be swapped since the
accumulated sum of products does not need to be realigned
for subsequent addition of multiplication results. As a
consequence, control signal �3 does not need to be activated
to perform the swapping and the correct storing in the sum
and in the carry registers. Actually, the result generated by
the carry save adder does not need to be stored in the sum
and in the carry registers. In fact, since a bit-serial
presentation of the final result of the first phase has to be
generated to execute the multiplication in the second phase,
we can truncate the result of the first phase and then use a
parallel-to-serial conversion of the bits to control the
operation of the partial product generator during the
second PE phase.

Therefore, we discard the m least significant bits of the
final result of the first PE phase which are located in the m
most significant positions of the sum and carry registers at
the end of the last multiplication of the first PE phase. The
most significant bits of the final result (that have to be used

LIM ET AL.: A SERIAL-PARALLEL ARCHITECTURE FOR TWO-DIMENSIONAL DISCRETE COSINE AND INVERSE DISCRETE COSINE... 1303

Fig. 5. The H shift register and the H register.

Fig. 6. The hardwired shifter. Fig. 7. The hardwired rotator.



during the second phase) are located in the remaining
positions of the sum and carry registers.

To allow reuse of the serial-parallel multiplier during the
second phase as in the first phase and to propagate the
carries of the final result itself, the most significant bits of
the final result are moved into the sum shift register, the
carry shift register, and the master-slave memory element
D1. The sum shift register is a mÿ 2� ceil�log2N� shift
register with parallel loading, as shown in Fig. 10; serial
propagation is controlled by the clock signal �1, while the
initial parallel loading is controlled by signal �4. It is used
to hold and serialize the mÿ 2� ceil�log2N� most signifi-
cant bits of the sum result of the first phase. The carry shift
register has the same structure and operation as the sum
shift register.

Since the bit having weight 2m in the final result is
generated by the rightmost full adder in the carry save
adder, there is no carry bit associated with this position. As
a consequence, that sum bit is the result bit that has to be
used during the first iteration of the multiplication in the

second PE phase. To avoid wasting clock cycles, this bit is
stored directly in the master-slave memory element D1
instead of being saved in the sum shift register, so it is
immediately ready for generating the first partial product of
the second PE phase. The use of such a memory element
facilitates separating the serialization of the multiplier of the
second phase from the partial product generation and
accumulation so that both of these operations have about
the same latency. If this element was not used, the latency of
partial product addition would be approximately doubled.

During the subsequent mÿ 2� ceil�log2N� clock cycles,
the standard serial adder SA1 computes the subsequent bits
of the multiplier that are fed (through multiplexer M4,
memory element D1, and multiplexer M1) into the partial
product generator.

Shift register R copies and holds each bit of the result of
the first PE phase (incorporating the propagated carries) for
reuse in the subsequent multiplications of the second
PE phase. During each multiplication, the contents of the
shift register R are recalculated Multiplexer M5 selects shift
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register R during these multiplications, while multiplexer

M6 is used to load and recirculate the multiplier. Shift

register R is a standard shift register having mÿ 1�
ceil�log2N� bits and its operation is controlled by signals

�6 and �1.

During the last multiplication of the first PE phase, the

multiplicand of the second PE phase has been serially fed

into the H shift register and, then, moved into the H register.

To guarantee the correct data presentation along the

H interconnection, each of the data in the second PE phase

(except the last one) needs to be transformed in a

representation on mÿ 2� 2ceil�log2N� bits: Only the first

m least-significant bits will be used and moved into the

H register, while the 2ceil�log2N� ÿ 2 most-significant bits

will be discarded. Representation extension can be easily

obtained by holding the most significant bit of every

operand fed in the horizontal bus at the primary array

input for 2ceil�log2N� ÿ 2 additional clock cycles. Extending

the representation is more efficient than modifying the

control signal of the H shift register since generation and

propagation of such a signal is more complex.

The multiplication of the second PE phase is performed

as the last multiplication of the first phase. The mÿ 2�
ceil�log2N� bits of the result are available at the outputs of

the carry save adder at the end of the last iteration of the

multiplication. Control signal �4 is activated to move the

bits in the sum shift register, in the carry shift register, and

in memory element D1. At the end of the multiplication in

the second PE phase, no swapping for realignment is

necessary since only one multiplication is performed in the

PE at each iteration and no accumulation is required within

the PEs. Therefore, we perform the truncation and serial-

ization of the result with the carry propagation. Note that

the most significant bit of the sum and the carry registers

are meaningless in this second phase since the result is one

bit shorter than the accumulated result of the first PE phase.

The carry propagation through the serial adder SA1 and

the overall serialization of the result of the second phase are

performed as in the first phase. The serial final result is now

added to the result computed by the PE in previous row of

the same column and propagated down through the V and

the V' shift registers. This addition is performed by serial

adder SA2.

The value contained in D1 is held for ceil�log2N� ÿ 1

additional clock cycles in order to extend the representation

of the multiplication result to mÿ 2� 2ceil�log2N� bits (as

the final value of the second PE phase which propagated

vertically) for correct addition in SA2.

4 ARCHITECTURAL EVALUATION

The registers that decouple the computation during the

different phases allow us to obtain a sort of pipelining

between the operations in the PE. That is, the operations in

the PE may be overlapped in time to achieve a high

performance. The timing of PE (0, 0) is shown in Fig. 11. We

denote with s and s' the sum bits generated by carry-save

adder during the previous and the current iterations, with c

and c' the carry bits generated by carry-save adder during

the previous and the current iterations, with r the result of

the first PE phase, and with t and t' the partial vertical

summations which come in and go out during the second

PE phase. In parentheses, we give the bit index when

appropriate. The columns are associated with the clock

cycles: The time is clocked by the signal �1.
From Figs. 4 and 11, it is possible to deduce the

performance of the proposed serial-parallel architecture.

Due to the internal pipelining of each PE, the minimum

clock period, � , is given by:

� � �pp � �FA � �sr � �pp � �FA � �MUX � 2�D;

where �pp is the latency of the partial product generator, �FA

is the latency of a full adder, �sr is the latency of the sum

register, �MUX is the latency of a two-input multiplexer, and

�D is the latency of a master-slave register. To have a rough

evaluation of the clock cycle independently from the

specific integration technology adopted for the physical

realization, we assume �pp � 1, �FA � 6, �MUX � 2, and

�D � 3. For these values, the clock cycle � is approximately

15 equivalent gate delays.
The latency of each PE for the first phase is �N � 1�m� ,

while, for the second phase, it is

�N�mÿ 2� 2ceil�log2N�� ÿ 1� ceil�log2N���:

The total latency, lPE, for an individual PE is therefore

�2N � 1��mÿ 1� ceil�log2N��� . Due to the time skewing of

the computation in the PEs by starting from PE(0, 0) down

to PE(N, N), the total latency l of the array computation is

given by:

l � lPE �m�N ÿ l��
� �N�3mÿ 2� 2ceil�log2N�� ÿ 1� ceil�log2N���;

where m� is the skew time between two adjacent PEs.
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Fig. 10. The sum and carry shift registers.



The maximum throughput, T, can be obtained by

continuously feeding input matrices into the array. It is

given by:

T � �2N�mÿ 1� ceil�log2N���ÿ1�ÿ1:

The circuit complexity, C, can be roughly evaluated by

considering the equivalent gate count. It is given by:
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Fig. 11. Schedule for processing element (0, 0).



C � N2CPE

� N2��2m� 1� ceil�log2N��CrmFA
� �19mÿ 13� 12ceil�log2N��CD

�m Cpp � �6m� 3ceil�log2N��CrmMUX�;

where CPE is the complexity of the individual PE, Cpp is the

complexity of the partial product generator, CFA is the

complexity of a full adder, CMUX is the complexity of a two-

input multiplexer, and CD is the complexity of a master-

slave register. Typical values for the circuit complexity of

these components (measured in equivalent gates), are

Cpp � 1, CFA � 9, CMUX � 3, and CD � 6. As a consequence,

the complexity of the whole array is approximately

N2�151mÿ 69� 90 ceil�log2N�� equivalent gates.
Figs. 12, 13, 14, and 15 summarize the above evaluations

concerning latency, throughput, circuit complexity, and

CL2 for typical device parameters.

5 CONCLUSIONS

In this paper, we have presented the detailed structure

implementing the processing element of a unified array for

two-dimensional DCT and IDCT transforms. The serial-

parallel architecture allows us to realize a compact system
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Fig. 12. Estimated latency.

Fig. 13. Estimated throughput.



having high performance. Serial data transfer reduces the
number of interprocessor connections and the overall
wiring required to propagate the data. Internal parallel
operation with carry-save addition achieves a high perfor-
mance by avoiding carry propagation. The internal pipelin-
ing of the operations provides the maximum exploitation of
all components so that operations are at least partially
overlapped in time to reduce the overall latency and to
increase the throughput.
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