
Semiconcurrent Error Detection in Data Paths
Anna Antola, Member, IEEE, Fabrizio Ferrandi, Member, IEEE,

Vincenzo Piuri, Senior Member, IEEE, and Mariagiovanna Sami, Senior Member, IEEE

AbstractÐA high-level synthesis strategy is proposed for design of semiconcurrently self-checking devices. Attention is mainly

focused on data path design. After identifying the reference architecture against which cost and performance are evaluated, a

simultaneous scheduling-and-allocation strategy is presented for linear-code data flow graphs, allowing resource sharing between

nominal and checking data paths. The proposed strategy is actually independent from a specific scheduling-and-allocation algorithm

since it is essentially concerned with the introduction of the fault tolerance issue at high-abstraction level in any design environment.

Conventional duplication with comparison, even if considered in a high-level synthesis strategy, leads to high circuit complexity

increase. The proposed approach provides that the required checking periodicity is satisfied while minimizing additional functional units

by means of maximum reuse of the resources available for the nominal computation as long as error detection ability is preserved. The

strategy is then extended to deal with branches and loops in the data path. Risk of error aliasing due to resource sharing is analyzed.

Index TermsÐSemiconcurrent error detection, self-checking circuits, checking periodicity, fault tolerance, high-level synthesis, data

flow graph, resource minimization.

æ

1 INTRODUCTION

TRADITIONAL figures of merit for ASIC designÐcost
(expressed as silicon area), latency (expressed as the

time required to generate an output), throughput (ex-
pressed as the number of outputs delivered in the time
unit), etc.Ðmust of necessity be completed with evaluation
of testability and cost of testing. Algorithm-specific archi-
tectures seldom inherently exhibit those characteristics
(such as regularity, ease of controllability and observability,
possibility of partitioning, etc.) that facilitate testing.
Adding design-for-testability features to a complete logic-
level design may become excessively costly in terms of both
area and performance. In recent years, a number of authors
have advocated introduction of test-related techniques since
the first synthesis steps. In particular, solutions aiming at
high-level synthesis have been proposed [1], [2]; in the same
line, introduction of BIST features allows us to achieve
autonomous testing [3]. BIST techniques correspond to an
off-line testing philosophy, suitable for end-of-production
testing or for periodic life-time testing.

For demanding applications, requiring high reliability of
the digital system and correctness of the results, some form
of on-line testing must be introduced. High-level synthesis
approaches leading to concurrent self-checking or even
fault-tolerant systems have recently been introduced. Such
solutions allow to exploit characteristics of the application
(as specified by the algorithm implemented by the module)
to achieve the required performance while limiting

redundancy. Thus, in [4], [5], [20], the problem of autono-
mous error detection and recovery from transient faults was
in particular taken into account.

Referring to permanent faults, a concurrent error detection
technique based on use of arithmetic codes was presented
in [6], [7] for Data Flow Graphs (DFGs) [11] consisting of
arithmetic operations only. Scheduling and allocation algo-
rithms proposed there provide detection of any single fault
(within a fairly comprehensive fault model) with low error
latency (i.e., the time between the error occurrence and its
detection) and limited area redundancy, checking being
performed at suitable intermediate points (as well as on
primary outputs) so as to minimize the number of checkers
while avoiding aliasing. In [8], a technique providing fault
location is proposed by exploiting, at each control step,
unused nonredundant resources to repeat operations in the
DFG; the null-redundancy requirement (at least, as far as
functional units are concerned) leads to the drawback that
for some units neither checking nor location are feasible.

In self-checking solutionsÐincluding the ones based on
duplication with comparisonÐ[4], [6], [7], [19], [20],
checking is applied to the results produced either by the
complete DFG or by some suitably defined segments of the
DFG itself. Concurrency of checking thus refers to the
complete process or to segments of the process, not to
individual operations (as is done in [8]); at the end of every
iteration of the process implemented by the ASIC, correct-
ness of its outputs (and, possibly, of some intermediate
results) is verified. Complete duplication of the hardware
resources leads to high circuit complexity.

In the present paper, we propose to introduce a high-
level synthesis approach supporting semiconcurrent self-
checking. The rationale justifying adoption of semiconcur-
rent testing derives from the low fault occurrence rates of
present silicon technologies thatÐexcepting the case of
extremely severe operation environmentsÐmake it accep-
table to perform checking operations not concurrently with

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001 449

. A. Antola, F. Ferrandi, and M. Sami are with the Department of
Electronics and Information, Politecnico di Milano, piazza Leonardo da
Vinci 32, 20133 Milano, Italy.
E-mail: {antola, ferrandi, sami}@elet.polimi.it.

. V. Piuri is with the Department of Information Technologies, University of
Milan, via Bramante 65, 26013 Crema (CR), Italy.
E-mail: vincenzo.piuri@unimi.it.

Manuscript received 28 Aug. 1998; revised 21 Nov. 2000; accepted 6 Feb.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 106011.

0018-9340/01/$10.00 ß 2001 IEEE

each process iteration, but periodically, in correspondence
of each Nth process iteration (N being suitably defined with
respect to the application and the expected fault occurrence
rate). Semiconcurrent techniques are effective for systems
that operate on a continuous flow of data and that cannot be
excluded from nominal operation in order to undergo an
off-line test phase. The flow of input data can be considered
as a long sequence of random test vectors, leading to
acceptable fault coverage. Such techniques have been
proposed in the past for regular architecturesÐtypically,
linear arrays or rectangular arrays [9], [10]Ðwhere a limited
number of redundant units cyclically duplicate operation of
nominal units so as to achieve fault location as well as fault
detection. As in concurrent self-checking, nominal input
data are used for checking purposes; error latency is thus
due not only to checking periodicity but also to possible
nonexcitation of existing faults by the present input data.
The results achieved by these approaches thus offer a
compromise between cost (expressed in terms of area
redundancy) and checking efficiency (relating mainly to
error latency).

The semiconcurrent self-checking approach proposed in
the present paper relates to arbitrary application-specific
systems, described by DFGs [11]. Since more general
computation structures may incorporate alternative execu-
tion paths (branches) as well as iterative execution paths
(loops), we will extend our approach to deal with the linear
parts of these computation graphs. No constraints are given
on operation types. The aim of our approach can be
summarized as follows:

for a given optimum nominal scheduling and allocation of a
DFG, and for a given periodicity of checking, synthesize a
modified data path that will allow semiconcurrent self-
checking with minimum redundancy (in terms of functional
units) and minimum risk of aliasing,

where periodicity of checking is defined as the ratio
between the number of control steps between two
subsequent self-checking iterations and the number of
control steps required by the nominal schedule, while
aliasing occurs whenever the system fails to detect an
error present in its results. Some preliminary results were
published in [12], [13].

The innovation described in this paper is essentially the
introduction of the semiconcurrent self-checking strategy in
the high-level synthesis environment. Our goal is to show
that this approach can be effectively used in high-level
synthesis and that a smaller redundancy is necessary than
in the conventional case of full duplication with comparison
since hardware resources are reused as much as possible
whenever the self-checking ability is not impaired. In
particular, we are neither proposing a new allocation and
scheduling algorithm nor focusing on a specific existing
algorithm since the basic idea can be introduced in any of
these algorithms. For clearness' sake, we therefore adopt a
very basic algorithm. Obviously, more efficient scheduling
and allocation algorithms will lead to maximum exploita-
tion of the hardware resources introduced for the nominal
computation. The overhead required by self-checking in the
semiconcurrent perspective will be less anyway than the

conventional duplication in comparison to that which is
adopted in the solutions currently available in the literature.

In Section 2, we define the fault model and the rules by
which periodicity of checking is computed, as well as the
reference architecture against which results produced by
our synthesis technique is evaluated. The high-level
synthesis approach for minimum-cost semiconcurrent self-
checking data paths is defined in Section 3 for linear-code
DFGs; in Section 4, the algorithm is extended to deal with
branches and loops. In Section 5, the problem of aliasing is
examined and the guidelines by which the application
designer can evaluate the risk of aliasing for the specific
application are introduced. Effectiveness of the proposed
strategy is discussed in Section 6, where experimental
evaluation is presented.

2 FAULT ASSUMPTIONS AND REFERENCE

ARCHITECTURE

The approach chosen here to achieve semiconcurrent self-
checking is to modify standard high-level synthesis
techniques so that the synthesized data path has self-
checking properties. The fault model adopted is therefore of
necessity a functional one that is technology-independent.
We assume that:

1. Faults affect functional units, registers, and point-to-
point interconnection networks. Usually, other authors
(see, e.g., [4], [5], [8], [20]) assume that faults are only
in functional units because of their relative complex-
ity with respect to switches and registers.

In our perspective, faults in registers are viewed
and treated as equivalent to faults in functional units
connected to such registers. In fact, contents of a
faulty register are either outputs that are subject to
periodic checking or inputs to functional units. In
the first case, if the data excite the fault, checking
will generate an error signal. In the second case, an
error-affected operand will be fed to a fault-free
functional unit so that an error will appear in the
results and will ultimately be detected as if it were
due to a faulty functional unit.

Similarly, faults in point-to-point interconnection
networks are viewed as faults in suitable functional
units. As a consequence of a single fault located in a
multiplexer, either a functional unit will be fed with
a ªwrongº operand or a ªwrongº result will be
stored in a register. The fault may affect either the
multiplexer's addressing function (an unwanted
data input is routed to the multiplexer's output) or
data transferred (e.g., a stuck-at on an output line).
These errors will be seen from the checking structure
as if they affected the functional unit connected with
the faulty multiplexer.

Since faults in registers and interconnections can
be dealt with as faults in suitable functional units, for
simplicity's sake, but without loss of generality, in
the sequel we will refer explicitly only to faults in
this last kind of hardware resources.

2. At most a single fault (i.e., a single faulty hardware
resource, either unit, register, or interconnection) is

450 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001

present in the system. Since the approach relates to
run-time checking rather than to end-of-production
testing, it is sufficient to choose an adequate
frequency for semiconcurrent self-checking opera-
tions in order to make the assumption acceptable. In
the case of very complex systems, it is also possible
to partition the system into subsystems, each
individually provided with self-checking capacities,
thus allowing for presence of a larger number of
faults.

We now introduce a self-checking reference architecture against
which architectures designed by means our high-level
synthesis approach will be evaluated.

We denote as nominal architecture the architecture
implementing the nominal data path and designed without
any self-checking capacity; scheduling and allocation are
performed on the basis of cost and performance require-
ments only by using any scheduling-and-allocation algo-
rithm (i.e., the one preferred by the designer). We adopt in
this paper latency as the primary figure of merit so that the
number kN of control steps required coincides with the
length of the critical path: This does not in any way
constitute a restriction for our approach. Let � denote the
length of the clock cycle: The latency of the nominal
architecture is lN � kN� . The checking periodicity is defined
as the maximum time T which is allowed between two
successive checking actions. Actually, we refer to the relative
checking periodicity, P , computed as the ratio P � bTlNc; if
T < lN , the system is partitioned into subsystems, each with
latency suitably lower than T , and the approach is applied
to each subsystem individually.

An independent checking architecture is now designed,

starting from the DFG of the nominal process and

implementing the lowest-cost data path compatible with P. If

fault information allows it (i.e., if T >> lN), a straightfor-

ward resource-constrained solution can be adopted, leading

to the design with minimum number of functional units;

otherwise, a time-constrained solution with T as allowable

latency and cost as the secondary figure of merit will be

adopted. Let lC � kC� be the latency of the circuit thus

designed; the time lCHECKING � kCHECKING� required for

checking results on the critical paths must be added to

obtain latency of actual checking. Periodicity of checking is

satisfied if T � lC � lCHECKING. If P � � dlC�lCHECKINGlN
e < P ,

then we can use P � as checking periodicity and achieve a

more frequent checking without increasing the hardware

resources. Assuming that a checker operates in one control

step, kCHECKING depends only on the chosen schedule and

on the number of checkers available.
The self-checking reference architecture is obtained by

composition of the nominal and the independent checking
architectures, and its operation is as follows:

1. At the beginning of a checking cycle, the same set of
nominal data (checked data) is fed to both nominal
and checking architectures. The two architectures
then operate independently; in particular, after kN
control steps, the nominal architecture will receive a
new set of input data and start operating on them.

The primary outputs produced by the nominal
architecture operating on the checked data are
stored in buffer registers until the corresponding
values have been computed by the checking archi-
tecture; then, checking is performed and the buffer
registers in the nominal architecture are freed. Self-
checking checkers are used for checking; the number of
checkers depends on the DFG structure as well as on
latency and cost requirements;

2. After kC � kCHECKING control steps, either a check-
ing operation has detected an error and an error
signal is activated or both architectures are declared
fault-free; after P iterations by the nominal archi-
tecture, both architectures receive a new set of
checked data and Step 1 is repeated.

The two architectures do not share any resource so thatÐin
the single-fault assumptionÐif results produced are iden-
tical, we can safely state that operation of both architectures
is error-free (either no fault is present or a possible fault is
not excited by the nominal set of input data). In other
words, no aliasing (by which error-affected results would be
considered correct) is possible. Periodicity of checking is
satisfied by construction; the total number of resources
requiredÐin terms of functional unitsÐis given by the sum
of resources in the nominal and in the checking architecture.
If a minimum-cost checking data path has been designed, in
particular, we need only add one to each type of functional
unit required by the nominal data path. A rough evaluation
of the controlling FSMs' complexity identifies a ªcheckingº
FSM with kC � kCHECKING states and a simple controller
that ensures that both data paths are fed the same data after
each sequence of P � kN control steps.

In generalÐas noticed in [8]Ðin the nominal data path,
not all functional units present will be actually used in each
control step; based on this consideration, we explore the
possibility of reusing the functional units of the nominal
architecture in the checking one so as to lower the cost of
the self-checking data path. Constraints ruling such reuse
will be described in the next section, where the scheduling-
and-allocation algorithm that allows creation of a checking
data path sharing the nominal data path's resources will be
presented.

3 RESOURCE SHARING FOR MINIMUM-COST

SEMICONCURRENT SELF-CHECKING OF DATA

FLOW GRAPHS

We introduce our high-level synthesis strategy by referring
initially to the case of DFGsÐsuch that neither branching
nor loop constructs are included. To reduce cost of the
semiconcurrent self-checking data path, we envision the
possibility of sharing some resources of the nominal data
path with the checking data path. More precisely, we first
schedule and allocate the nominal data path by using any
scheduling-and-allocation algorithm (the designer can
choose the preferred one, without any restriction). The
resulting nominal architecture as well as the related
schedule and allocation are frozen and never changed
during the subsequent construction of the checking data
path. If feasible, the checking data path is then scheduled

ANTOLA ET AL.: SEMICONCURRENT ERROR DETECTION IN DATA PATHS 451

and allocated within the given time constraint defined by
the checking periodicity and by introducing as few
additional resources as possible exceeding the ones of the

nominal architecture. If a resource of the nominal archi-
tecture is not used in a step and could be used by the
checking data path without aliasing impairing the detection
abilities, such a resource becomes shared between the

nominal and the checking data paths. Otherwise, an
additional functional unit is introduced for the checking
data path. The set of registers is increased and the
interconnection structure is modified as required by the

mapping of the checking architecture.1 To minimize the
addition costs, a set of necessary conditions must be verified
first:

1. As a necessary condition for avoiding aliasing, we
must ensure that no individual operation in the DFG
will be performed in both nominal and checking data path
by the same functional unit. This implies restrictions
on scheduling and allocation of the checking DFG;

2. Scheduling of the checking DFG onto the shared
resources must be possible within the given
periodicity P .

Condition 1 ensures that it will be possible to achieve
proper scheduling and allocation of the self-checking data
path with minimum risk of aliasing. Condition 2 ensures
that such a schedule will require only a finite number of

control steps. A preliminary analysis of the nominal data
path may lead to an immediate increase of the set of
functional units. An instance of a given type of functional
unit must be added when at least one of the following

conditions holds:

1. whenever one instance only of that type is present in
the nominal data path (to achieve Condition 1);

2. whenever all instances of that type are used in each
control step of the nominal schedule (to achieve
Condition 2).

If the two conditions lead to adding as many functional
units as required by the reference architecture described in
Section 2, resource sharing is excluded a priori since it

would lead to a design whose aliasing probability might be
higher than in the reference architecture without decreasing
its cost.

Let us first describe informally the core concepts of our

approach before presenting the implementation algorithm.
We refer from now on to nominal and checking DFGs, thus
denoting, respectively, the fully scheduled and allocated
DFG corresponding to the nominal data path and the

(levelized, but as yet neither scheduled nor allocated) DFG
corresponding to the checking data path which must be
scheduled over at most PkN control steps. Scheduling and
allocation of the nominal DFG are kept unchanged; the

problem thus involves scheduling and allocation of the
checking DFG only. In the sequel, superscript N and C for a
given operation oj will denote, respectively, the appearance
of the operation in the nominal or in the checking DFG.

Consider a sequence of PkN control steps over which the
nominal schedule is repeated P times; allocation of
functional units in the nominal data path is given. An
extended set of functional units, consisting of the nominal
ones plus those inserted to satisfy Rules 1 and 2 above, if
any, is taken into account from now on.

In any control step ch (1 � h � P � kN ÿ kCHECKING) and
for each ready operation oCj �k� of type tk:

1. Availability of functional units uj�k� of type tk
compatible with operation oCj �k� is determined by
examining schedule and allocation of the current
replica of the nominal DFG in the step ch;

2. Allocation of operation oNj �k� in the first (checked)
replica of the nominal DFG is identified to avoid
allocating oCj �k� on the same functional unit support-
ing oNj �k�. (Thus, the same data will never be input to
the same unit in both data paths);

oCj �k� is then scheduled in step ch iff a functional unit
satisfying both conditions above is available.

For all operations that cannot be scheduled in control
step ch, priorities are updated and the attempt is repeated in
the following control step. This mixed scheduling-and-
allocation step is repeated until either the whole checking
DFG is scheduled in a satisfactory way over the P � kN ÿ
kCHECKING control steps or no such schedule is found.

In the first case, a resource-sharing minimum-cost self-
checking solution has been found. Registers for the
checking data path are identified and allocated, indepen-
dently of the nominal ones: This reduces the risk of aliasing.
Moreover, exclusion of register sharing is suggested by the
following considerations. First, lifetimes for variables in the
checking data path are usually rather long. Second, registers
in the nominal data path are already shared as much as
possible to reduce the circuit complexity of the nominal
architecture. Third, registers in the nominal data path are
used P times during operation in the checking data path.

Finally, the interconnection network is created and the
control FSM is synthesized.

If no acceptable schedule is found, we increase the set of
resources by adding (one at a time) a functional unit of one
of the used types. A heuristic approach is adopted to choose
the type of functional unit by which this set is increased, as
follows:

1. For each type tk, the number of times that the
schedule of ready operations compatible with tk has
been delayed in the checking DFG schedule are
counted and the first control step in which such a
miss occurred is recorded,

2. A functional unit of the type associated with the
highest count andÐfor equal count valueÐwith the
earliest miss is added to the set; in the case of
multiple units with identical associated values, the
lowest-cost one is chosen.

This solution attempts to achieve high probability of
anticipating the schedule of a larger number of delayed
operations without undue increase in computational
complexity.

Having thus outlined our general philosophy, we must
specify the scheduling-and-allocation algorithm as well as

452 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001

1. We choose to avoid sharing of registers between nominal and checking
datapath in order to decrease the risk of aliasing.

the priority figure chosen. As regards priority, a widely
used figure is mobility, whichÐin the case of time-
constrained schedulingÐis evaluated for each operation
oj�k� of type tk in the DFG as the difference mj�k� between
its ALAP and its ASAP labels [14], priority increasing with
decreasing mobility values. We suggest here to use extended
mobility defined as ej�k� � �P ÿ 1�kN �mj�k� ÿ kCHECKING,
i.e., the original mobility in the nominal DFG increased by
the additional number of control steps by which the
checking scheduled DFG can extend beyond the nominal
scheduled DFG, decreased by the number of control steps
required to check results on critical paths. Whenever a
ready operation cannot be scheduled in the present control
step and has to be delayed, its mobility is decreased by one
and so is the mobility of all its (immediate or indirect)
successors. Note that, whenever it is impossible to schedule,
in the present control step, an operation oCj �k� such that
eCj �k� � 0, it can be immediately stated that a schedule
within the given time bounds is impossible; thus, failure of
the attempt can be declared even before completing the
analysis of the whole DFG.

The scheduling-and-allocation technique can be sum-
marized as follows:

1. At any given control step ch, for each type tk of
functional unit determine the set oCh;k of the ready
operations oCj �k� that can be allocated on units of this
type and the set Uh;k of functional units uj�k� of type
tk that are not used in the nominal DFG during
step ch.

2. Whenever neither oCh;k nor Uh;k are empty, create a
bipartite graph whose nodes represent, respectively,
elements in oCh;k and in Uh;k and a node representing
oCj �k� 2 oCh;k is connected by an edge to a node
representing uj�k� 2 Uh;k iff operation oCj �k� in the
nominal DFG has not been allocated to uj�k�. Each
edge is labeled with a weight given by the

operation's extended mobility eCj �k� evaluated at
control step ch.

3. A matching is attempted on the bipartite graphs thus
created. Whenever a complete matching of opera-
tions onto functional units is achieved, all operations
are scheduled in control step ch and the allocation is
given by the matching. Otherwise, an ªoptimumº
partial matching is sought, where weights are taken
into account. All unmatched operations are delayed
to control step ch�1 and the relevant extended
mobilities are updated.

Steps 1 to 3 are repeated for increasing values of h until

either the whole DFG has been scheduled and allocated or
an operation with zero mobility cannot be matched. In this

last case, failure is declared and a renewed attempt is made
with suitably increased set of functional units, following the

criterion already specified.
It may be worthwhile noting that the number of control

steps finally required by the checking DFG may be less than

PN since, at some control steps, the number of ªfreeº
resources may be higher than that foreseen by the reference

minimum-cost architecture. In any case, checking periodi-
city will obviously be an integer multiple of kN .

With reference to aliasing, step 2 above is a necessary

and sufficient condition to avoid aliasing in the individual
operation only. If a functional unit is used to implement

different operations within the same sequence of opera-
tions, additional conditions need to be defined to prevent

aliasing, as discussed in Section 5.
As an example, we consider the AR filter also discussed

in [4], [15], whose optimum time-constrained scheduleÐ

eight control steps longÐis given in Fig. 1. A minimum-
resource allocationÐconsidering functional units onlyÐ

involves four multipliers (m1;m2;m3;m4) and two adders
(a1; a2) with the possible binding shown in Table 1. It is

kN � 8. We assume as periodicity of checking P � 3, with

ANTOLA ET AL.: SEMICONCURRENT ERROR DETECTION IN DATA PATHS 453

Fig. 1. Optimum scheduling for AR filter.

no restrictions on the number of checkers (a checking
operation requires one control step). Semiconcurrent check-
ing then requires at most 23 control steps to schedule the
checking DFG, the 24th step being reserved for checking.
The checking architecture of self-checking reference struc-
ture can be scheduled over 21 control steps by using just one
multiplier, one adder, and one checker.

Our shared-resources algorithm is now applied, attempt-
ing first to schedule a checking DFG within 23 control steps,
without increasing the resources. The attempt fails at
step 23, where operations 27 and 28 of the checking DFG
still remain to be scheduled and no free adder is available.
Count of delayed types of operations gives 7 delays for

multiplications and 20 for additions: Adder a3 is then
inserted. The scheduling and allocation algorithm is applied
once more, leading to the solution summarized in Fig. 2 and
Table 2.

Semiconcurrent checking with frequency P � 2 (actually
higher than initially required) is achieved by introducing
just one extra adder and one checker; results of the checking
DFG being available at the 14th control step, one primary
output is checked in the 15th step and the other one in the
16th. Cost and performance are thus better than in the
reference architecture.

Another example from the high-level synthesis
benchmarks [16] is the elliptic filter, whose nominal

454 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001

TABLE 1
Allocation and Binding for the Nominal AR Filter

Fig. 2. Scheduling for AR filter with semiconcurrent self-checking capability.

(time-constrained) structure requires four adders and oper-
ates on 11 control steps. The minimum-resource reference
architecture involves one adder and one checker and requires
27 control steps (26 for the computation and one for checking
the last-produced output); thus, checking periodicity of three
is obtained. A shared-resource solution can be designed
without introducing any new adder; the checking data path
operates in 16 control steps so that semiconcurrent checking
can be achieved with a periodicity of two.

A final word concerns complexity of the controlling FSM.
Comparing costs, again, with the reference architecture, it is
easily seen that the number of statesÐtherefore, of flip-flops
Ðdoes not increase so that this cost component is not
higher for the shared-resource solution than for the
reference architecture. Total cost of the FSM depends on
complexity of the control signals forwarded to the data
path, thence also on register and interconnection network
allocation.

4 EXTENSION OF THE APPROACH TO

HIERARCHICAL SEQUENCING GRAPHS

We extend now the basic approach to hierarchical Sequen-
cing Graphs (SGs), a generalization of the DFGs [11]; more
precisely, we consider the ones including branch and loop
constructs. We do not aim to check the whole SG (i.e., both
data and control paths), but only the linear-code DFGs
composing the SG. In particular, we show how to apply the
basic proposed approach to deal efficiently with these DFGs
in branches and loops.

Examine first the case of branching clauses: An elemen-
tary example is shown in Fig. 3, the SG consisting of a head
DFGH, a two-way branch (DFGA and DFGB) and a tail DFGT.

(Extension to the case of multiple branchings with
simultaneous execution of parallel subgraphs has no
conceptual difficulties).

Let EN
� be the �th execution of the nominal SG and let it

be a checked execution; let EC
� be the associated checking

execution. The next checked execution of the SG is EN
��P .

The head DFGH of EN
� generates an output that will be used

by the controlling FSM to select the execution of the
appropriate branch; such output is equivalent to any
primary output and, therefore, has to be checked as in SG.
Denote by NH the number of control steps of the nominal
schedule of DFGH.

Denote by DFGAN and DFGBN the two branches in the
checked execution of the nominal SG, by DFGAC and
DFGBC the corresponding branches in the checking
architecture, and by NA and NB the number of control
steps of the nominal schedule of the branches. For general-
ity's sake, no assumption is done on the distribution of the
actual of the primary inputs, i.e., on the probability of
executing each branch. While, obviously, the same branch-
ing alternative is chosen for both EN

� and EC
� , no such

assumption is possible for executions EN
� , � < � < �� P ,

with respect to EC
� .

In the literature, some algorithms have been proposed to
synthesize circuits with optimum of minimum, maximum,
or average number of control steps in the critical path. Since
we aim to show how semiconcurrent checking can be
generally introduced in high-level synthesis, we do not
restrict our attention only to these very efficient algorithms.2

ANTOLA ET AL.: SEMICONCURRENT ERROR DETECTION IN DATA PATHS 455

2. If complex strategies are envisioned to optimize the nominal SG's
critical path, the adoption of our approach needs to take into account and
use only the hardware resources that have actually been left available by the
specific synthesis technique adopted for the nominal architecture.

TABLE 2
Allocation and Binding for the Self-Checking AR Filter

In particular, we consider here the simple case in which
both branches are executed in the same number of control
steps so that DFGT begins at the same control step,
independently from the actually executed branch. On the
other hand, this case occurs, for example, whenever the
data entering the circuit arrive at a fixed frequency, as in
many dedicated signal and image processing applications,
and there is no advantage in having different execution
time of the branches since the execution frequency must
accommodate anyway the worst branch case.

This assumption allows for simpler identification of the
functional units that are not used in each control step of the
P nominal executions of the branch construct in order to
schedule and allocate the operations onto the available
functional units while avoiding aliasing. If different branch
duration were envisioned, we should consider all possible
combinations of branch activation during each execution
EN
� , � < � < �� P . Identification of the unused functional

units would be made difficult by the variable step in the
schedule from which the executions begin. Besides, too
many opportunities for resource sharing would be dis-
carded to avoid aliasing. On the other hand, this equal
duration of branches allows for limiting the complexity of
the controlling FSM. More general scheduling and alloca-
tion algorithms can be envisioned to achieve higher

performance in the case of branches with different duration:

The proposed approach can obviously be extended to deal

with these solutions.
The tail DFGT is the final sequence of operations that is

shared between the two branches and concludes the branch

construct. It can be void. Denote by NT the number of

control steps of the nominal schedule of DFGT.
Under the above assumption, kN � NH �max�NA;NB� �

NT is the number of control steps of the nominal SG. Let CH,

CA, CB, CT, and kC be the corresponding figures in the

checking architecture. Let ch be the control step reached in

design of the checking data path.
The basic algorithm presented in Section 3 is modified to

guarantee availability of resources independently of the

alternative chosen in each iteration of the nominal and the

checking executions; modifications concern the rules for

constructing the bipartite graphs. More specifically:

. For any step ch, if scheduled operations of the
nominal SG and ready (but unscheduled) operations
of the checking SG are within DFGH or DFGT, the
basic algorithm is applied.

. For any step ch, if the scheduled operations of the
nominal SG belong to DFGH or DFGT, while the
ready (and unscheduled) operations of the checking

456 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001

Fig. 3. A nominal and checking data paths with branches.

SG belong to DFGA or DFGB, a bipartite graph is
built as in the basic algorithm separately for each of
the branches in the checking SG. The basic algorithm
independently performs scheduling and allocation
for each branch.

. For any step ch, if the scheduled operations of the
nominal SG belong to DFGA or DFGB, but the ones
of the checking SG belong to DFGH or DFGT, the set
of available functional units Uh;k is obtained by
removing the functional units uj�k� allocated in any
branch of the nominal SG at that step (this extends
the definition of Step 2 in the basic algorithm).
Scheduling and allocation are then performed on
these sets by using Step 3 of the basic algorithm.

. For any step 1 � ch � kN , if operations of both
nominal and checking SG fall within the branching
construct, two bipartite graphs are built by extend-
ing Step 1 of the basic algorithm to evaluate aliasing
correctly:

1. one bipartite graph including operations of
branch DFGAC and functional units uj�k� not
used by branch DFGAN in the same step ch,

2. a corresponding one for branches DFGBC

DFGBN.

Steps 2 and 3 of the basic algorithm are separately

applied to each of these bipartite graphs.
. For any step kN � ch � kC , if operations of both

nominal and checking SG fall within the branching
construct, again to evaluate aliasing correctly, one
bipartite graph is built for each branch of the
checking SG as follows, by extending Step 1 of the
basic algorithm:

1. the set of available functional units in either
graph (UA

h;k and UB
j;k) is obtained by removing

the functional units uj�k� allocated in any branch
of the nominal SG,

2. operations oCj �k� of one branch only of the
checking SG are inserted.

Steps 2 and 3 of the basic algorithm are then

separately applied to each of these bipartite graphs;

conditions in Step 2 intended to avoid aliasing

always refer to the operations in EN
� .

To show clearly the application of this technique, we

consider the SG in Fig. 4a, having empty head and tail

sections. Scheduling of the nominal SG by a time con-

strained approach is shown in the leftmost part of Fig. 4b;

both alternatives must be available so that the branch

actually executed will be chosen according to the current

value of the branch selector. The scheduled SG requires

three control steps to be completed; allocation of the

nominal SG can be performed as shown in Table 3 by

using two multipliers, two adders, and one subtractor.
The checking SG built according to our modified

algorithm is shown in the rightmost part of Fig. 4b, while

the resulting allocation leading to low aliasing probability is

given in Table 4. The scheduled checking SG requires one

additional subtractor (to avoid aliasing) and one checker;

generation of the checking result is performed in five control

steps, while the checker can operate in the sixth control step,
allowing a relative checking periodicity P equal to two.

A second extension concern loops. Consider first the case
of data-independent numbers of iterations. We discuss here
the case of a single loop; extension to multiple and/or
nested loops does not require further theoretical analysis.
Refer to Fig. 5; notation is similar to that in Fig. 3, DFGB

here denoting the loop body. The nominal schedule requires
NH control steps for the head, NB for a single iteration of the
body, and NT for the tail. The loop body is iterated K times
in any execution instance. In a similar way, assuming that a
schedule has already been created for the checking SG, we
define CH, CB, and CT The total latency kN (in number of
steps) for the nominal SG is kN � NH �KNB �NT; for the
checking SG, kC � CH �KCB � CT. As for linear DFGs, we
assume that the optimum schedule-and-allocation choice
for the nominal SG is kept unchanged when scheduling and
allocation are performed for the checking SG.

A trivial solution consists of complete unrolling of both
nominal and checking SGs (possible consequent algorithmic
optimizations, if any, must be identical for both): The basic
algorithm is thus applied in a straightforward way. While
possibly leading to lower latency, this requires a larger
number of control words for the controlling FSM.

Let us examine an alternative approach without unrol-
ling. Assume that control step ch has been reached during
scheduling and allocation of the checking SG. ch corre-
sponds to the control step c�h � jch ÿ 1jmod kN

� 1 in the
nominal SG. It is:

. If 1 � c�h � NH, selection of the operations in the
checking SG to be scheduled in control step ch and
related allocation is performed as for a linear SG;

. If NH � 1 � c�h � NH �KNB, the step reached within
execution of the cycle in the nominal SG is
jch ÿNH ÿ 1jmod NB

� 1; this information is used for
the checking data path, as above;

. If NH �KNB � 1 � c�h � kN , the basic algorithm is
again applied.

Checking in this way is implicitly applied to all
operations executed during all K iterations of the loop.
Since checking periodicity is immediately related to
kC ÿ kN , for large values of K and of CB ÿ CH, it may well
happen thatÐin order to achieve acceptable checking
periodicityÐthe set of resources to be introduced for
implementation of the checking SG will become too
relevant.

A solution that limits the increase of resources may be
defined at a lower level by checking each individual section
of the loop only once within the defined periodicity.
Checking is applied independently to the head section, to
the last iteration of the loop body, and to the tail section of
the SG. The checking architecture is designed to operate on
the body section as follows:

1. At the beginning of a checked execution, input data
are fed to both nominal and checking data paths.
Execution of the head section continues in both data
paths as if such sections were independent SGs so
that ªresultsº are checked as soon as available;

ANTOLA ET AL.: SEMICONCURRENT ERROR DETECTION IN DATA PATHS 457

2. At step NH, the nominal architecture stores data

input to the loop body as checked loop body inputs.

3. Execution of the current iteration of the loop body is

performed by the nominal architecture; at some

control step within it, the checking architecture may

in turn start execution of the loop body on the

current checked loop body inputs. At the end of the

current iteration by the nominal architecture, up-

dated values of the loop body inputs are stored as

checked loop body inputs, replacing the previous

ones; if the checking architecture is already execut-

ing the loop body, intermediate results achieved are

discarded and the checking computation is restarted

on the new checked body inputs. Step 2 is repeated

458 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001

TABLE 3
Allocation and Binding for the Nominal SG

for the Example of Fig. 4

Fig. 4. Application of the modified algorithm for data paths with branches: (a) the SG, (b) the scheduled nominal and checking SGs.

for each iteration by the nominal architecture
excepting the last one.

4. When the nominal architecture starts the Kth
iteration of the loop body, the checking architecture
is allowed to complete the computation of the loop
body on the final checked body inputs. At this point,
results of the nominal and checking final iterations
of the loop are compared.

5. When the nominal architecture completes the loop
body iterations, all nominal results relevant to the
tail section are stored as checked tail inputs.
Checking of the tail section is then performed as
for any linear-code DFG.

The above solution allows us to reduce latency of execution

on the checking architecture with respect to the nominal
one; on the other hand, it also reduces fault coverage since it

reduces probability of fault excitation (the loop body is

tested with one instead of K vectors).
To be consistent with evaluations produced for linear-

code DFGs, the reference architecture ought to be designed

for the same checking philosophy (i.e., with checking

involving the last iteration of the loop); therefore, the

reference controlling FSM would have at least as many

states as for the resource sharing solution.

This last solution can be adopted in the case of data-

dependent loops as well. Step 3 above is simply activated at

the last loop body iteration.3 While, conceptually, the

scheduling-and-allocation technique for the checking SG is

not modified, in practice, its application becomes more

complex. As an example, we consider the differential

equation solver [16]; the resulting self-checking SG is

shown in Fig. 6, while allocation is given in Table 5. The

nominal SG operates in seven control steps and requires one

ANTOLA ET AL.: SEMICONCURRENT ERROR DETECTION IN DATA PATHS 459

TABLE 4
Allocation and Binding for the Checking SG for the Example of Fig. 4

Fig. 5. Nominal and checking data paths with loop.

3. On the basis of the definition given in Section 2, periodicity P would
become, in this case, data-dependent as well; to make scheduling and
allocation feasible, a fixed value of P is required. The simplest solution is to
consider nominal executions in which the loop body is executed once only
and to refer P to such value.

comparator, two multiplier, one adder, and one subtractor.

The minimum additional functional units needed to avoid

aliasing in the checking SG are one comparator, one adder,

and one subtractor: Checking can be performed in 10 control

steps and, as a consequence, the relative periodicity P can

be equal to two.

460 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001

Fig. 6. The differential equation circuit.

If nested loopsÐpossibly enclosing branchesÐare con-
sidered, the complexity of both the algorithm and the
controlling FSM may become so relevant as to make
straightforward duplication with comparison and concur-
rent checking attractive. (It may also be recalled that, when
SGs with complex control structures are considered, some
authors suggest control-flow oriented scheduling techni-
ques [17], [18] rather than the data-flow oriented ones
adopted here).

5 THE ALIASING PROBLEM

As suggested in Section 2, resource sharing between
nominal and checking data paths may lead to risk of
aliasing; Condition 1 of Section 3 guiding allocation of the
checking DFG is only the minimal condition to be satisfied
to avoid the certainty of aliasing on the individual operation.

Let's consider first the case of sequences of operations,
with specific reference to linear DFGs. A path in a DFG can
be considered as an ordered sequence of operations. If we
examine the scheduling and allocation obtained for a
general DFG by means of the algorithm in Section 3, it is
quite probable that, referring to a path from primary inputs
to a primary (thence, checked) output in both nominal and
checking DFGs, there will be one or more shared functional
units used to implement different operations of the same
type along the path: This introduces the risk of aliasing.

Let us examine the possible instances on a simple
sequence of two operations of the same type; results can
be applied recursively to more complex sequences.

Let o1; o2 be two identical operations constituting a
sequence o1�o2��; �; ��: Assume the presence of two
identical functional units u1; u2 whose allocation leads,
in the nominal DFG, to o1) u1; o2) u2, and, in the
checking DFG, to o1) u2; o2) u1. Assume further that u1

is faulty and u2 is fault-free. We denote by f�1 �x; y� the

result produced by the faulty unit operating on inputs

x; y and, by f2�x; y�, the results produced by the fault-free

unit operating on the same inputs. Results produced by

the allocated operation sequence in the two paths can

now be denoted, respectively, as f�1 �f2��; �; �� and as

f2�f�1 ��; ��; ��. Aliasing occurs only if f�1 �f2��; ���� �
f2�f�1 ��; ���� and if results are affected by an error.

Possibilities are as follows:

. f2��; �� � f�1 ��; ��: This occurs only if the inputs �
and � do not excite the fault. In this case, results are
both error-free (error masking, not aliasing, occurs).
Then:

- If the pair of inputs f2��; ��; excites the fault in
u1, results produced by the two sequences will
be different and no aliasing on the whole
sequence is possible,

- Otherwise, results of sequence f�1 �f2��; ���� are
affected by error and different from the ones of
sequence f2�f�1 ��; ����: No aliasing occurs;

. f2��; �� 6� f�1 ��; ��: inputs �; � excite the fault in fu1.
Denote f2��; �� � �; f�1 ��; �� � ��. Then:

- If inputs �; do not excite the fault, it is
f2��; � � f�1 ��; �; if f2��; � 6� f2���; �, the error
is detected; otherwise, both results are correct
and error masking occurs;

- If inputs �; excite the fault, it is
f2��; � 6� f�1 ��; �; in this case, aliasing may occur
if f�1 ��; � � f2���; �.

It will be noticed that conditions under which aliasing

might occur are fairly restrictive and depend on character-

istics of the functional units as well as on the specific set of

data. It is up to the application designerÐbased on

information available for the application as well as for the

ANTOLA ET AL.: SEMICONCURRENT ERROR DETECTION IN DATA PATHS 461

TABLE 5
Allocation and Binding for the Self-Checking SG for the example of Fig. 6

technological implementationÐto evaluate the actual alias-

ing probability.
As already said in Section 2, in aliasing analysis, faults in

registers and interconnection network can be viewed as

faults in the functional units computing the values stored in

the registers.
Let's consider now the case of hierarchical SGs, in

particular, the ones containing branches. Since Step 2 of the

scheduling and allocation algorithm discussed in Section 4

is performed as in the basic algorithm discussed in Section 3,

the same conditions concerning aliasing for individual

operations and sequences of operations hold in SG with

branches as well.
To reduce the probability of excessive error latency due

to lack of fault excitation in the faulty functional units, a

further design guideline can be adopted. Consider the case

in which some functional units can be used in both

branches DFGA and DFGB at control step ch (i.e., that

belong both to UA
h;k and UB

h;k) as well as at control step ch�a
(i.e., that belong both to UA

h�a;k and UB
h�a;k). The units

among them that have been allocated to operations in

branch DFGA at control step ch should be used for

operations in branch DFGB at control step ch�a and vice

versa to guarantee uniform probability of usage to all units

and, as a consequence, uniform probability of fault

excitation.
As an example, consider the dataflow graph describing

x� y� z. The reference architecture consists of the adder

u1. The first and the second additions are performed by u1

at the control steps c1 and c2, respectively. The use of the

same unit to perform checking in subsequent steps will lead

to aliasing. In fact, an error "1 will be added to the nominal

addition x� y and the error "2 will be then added to the

subsequent addition in which z is added. In the checking

computation, the same errors will be added to the addition.

The use of a second functional unit u2 to perform checking

avoids this effect under the single fault assumption, thus

allowing error detection. Consider the mapping of the

addition x� y of the nominal computation on the unit u1

and that of the addition x� y of the checking computation

on the unit u2. Let's map the addition of z in the nominal

computation on the unit u2 and that in the checking

computation on unit u1. A fault in u1 may appear as the

error "1 in the first addition of the nominal computation and

in the second addition of the checking computation, thus

resulting in aliasing since the same error "1 is added to

x� y� z, both in the nominal and in the checking data

path.
To reduce the probability of aliasing, suitable techniques

can also be used to synthesize the data path. An interesting

example is provided in [19]. The strategy proposed there

can be also included in high-level synthesis with semi-

concurrent checking so as to further reduce the need for

redundant hardware resources. We have not based this

paper on such a technique in order to show the generality of

our strategy without binding it to a specific scheduling and

allocation algorithm.

6 EXPERIMENTAL EVALUATION

To evaluate the effectiveness of the proposed strategy to
achieve semiconcurrent error detection at a reasonable cost
in terms of circuit complexity, we synthesized some typical
circuits available in the literature. As significant and
characteristic examples we considered the AR filter, the
elliptical filter, the differential equation solver, and the
branch circuit reported in Fig. 4. Specifically, we synthe-
sized the nominal data path without error detection ability,
the modular redundancy approach based on duplication
with output comparison, the reference architecture de-
scribed in Section 2, and the self-checking architecture
obtained by using the innovative synthesis strategy pro-
posed in this paper. Since the circuit complexity saving of
our strategy depends on the relative checking periodicity,
P , the analysis was performed for different values of this
parameter that characterizes the frequency of the detection
operation. Synthesis has been performed by generating the
corresponding VHDL description of the circuits and by
using Synopsys Behavioral Compiler v. 2000.5 and
Synopsys Design Compiler v. 2000.5.

In Tables 6, 7, and 8, we report the results of our
experiments. In Table 6, for each circuit, we give the
number of adders, multipliers, subtractors, comparators,
and registers that are required in the self-checking strategies
mentioned above; for simplicity's sake, the evaluation is
given with P � 2 only for the AR filter. In Table 7, we
summarize the overall circuit complexity of the envisioned
self-checking circuits; the circuit complexity is given in
equivalent gate count, as obtained by Synopsys Behavioral
Compiler v. 2000.5 and Synopsys Design Compiler v. 2000.5.
In Table 8, we give the circuit complexity reduction (in
percent) of the semiconcurrent approaches with respect to
the duplication with comparison. Results concerning the
reference architecture and the proposed self-checking
strategy are shown to distinguish the contribution to circuit
complexity reduction generally given by the semiconcur-
rent checking from the specific contribution given by our
strategy.

The goal of our analysis given in Table 8 is two-fold.
First, we show that our self-checking strategy is effective to
save circuit complexity with respect to the conventional
duplication with comparison. This is achieved at the
expense of a reduction in the fail safety since only one out
of P results are checked. The less frequent the checking is,
the higher the circuit complexity reduction that can be
achieved is. Aliasing limits the circuit saving at higher
values of P since it makes it mandatory to limit the resource
reuse and introduce new resources. Second, we show that
our strategy is also able to save circuit complexity with
respect to the reference architecture presented in Section 2.
In some cases, our strategy largely outperforms the basic
reference architecture approach. In general, the amount of
circuit complexity saving provided by the proposed self-
checking strategy depends on the structure of the computa-
tion, i.e., on the aliasing induced by the specific resource
reuse. It is worth noting that this limit is not due to the
proposed strategy, but to the intrinsic nature of the circuit
structure.

462 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001

From Table 8, the designer can choose the most suitable

value of P as a trade-off between the need for limiting the

possible propagation of erroneous results and the circuit

complexity.

As far as circuit latency is concerned, it can be minimized

in all solutions by adopting a suited design approach. In

duplication with comparison, checking needs further steps

after the computation of the results. However, we can

ANTOLA ET AL.: SEMICONCURRENT ERROR DETECTION IN DATA PATHS 463

TABLE 7
Circuit Complexity in Equivalent Gates

TABLE 8
Circuit Complexity Reduction (Percentage) with Respect to the Modular Redundancy Architecture (the Circuit Complexity Is

Measured in Equivalent Gates)

TABLE 6
Circuit Complexity in Terms of Functional Units and Registers

accommodate the result checking in the first step of the
subsequent iteration so that latency will not be increased;
correctness of each final result will be asserted one step
after result delivery. In the reference architecture, as well as
in our strategy, we perform schedule and allocation so that
checking is always performed without any latency increase
within the P iterations.

The design strategy proposed here constitutes the basis
for an experimental tool that has been implemented in the
C++ language on an IBM-compatible PC, running the
MS-Windows/NT operating system. The designer can
define the SG by interacting with a graphic interface. By
means of visual interaction, the designer is then guided
through the analysis and synthesis of self-checking solu-
tions having different checking periodicity and redundancy
in order to allow her/him to identify the structure that best
matches the application requirements. The output of our
experimental tool is the VHDL description of the self-
checking data path and the schedule to be implemented in
the controlling FSM: This compatibility and integrability
with commercial CAD tools will allow for including our
approach in a standard design flow and CAD environment.

7 CONCLUSIONS

In this paper, we have shown how to effectively use a
semiconcurrent approach in high-level synthesis environ-
ments to design self-checking circuits. The reference
architecture has been identified and constructed by using
any scheduling and allocation algorithm. Then, the nominal
data path has been extended to include self-checking
features. The nominal architecture with the related schedule
and allocation of operations onto resources is considered
frozen and never changed to achieve the self-checking
features. The hardware resources of the nominal data path
that are unused at each clock step are exploited in the
checking one whenever the detection ability is not impaired
by possible aliasing. This minimizes the need for introdu-
cing redundant resources to implement the checking data
path. The proposed design strategy has been shown viable
and effective by means of popular benchmarks.

Although the basic idea can be incorporated in any
scheduling and allocation algorithm, as an example, a very
simple algorithm has been adopted to create the checking
data path. Our focus was not in fact on the optimization of
the algorithm: We aimed to show the feasibility and
effectiveness of introducing the self-checking properties
(namely by a semiconcurrent approach) in the high-level
synthesis environment directly.

REFERENCES

[1] K.D. Wagner and S. Dey, ªHigh-Level Synthesis for Testability: A
Survey and Perspective,º Proc. Design Automation Conf. '96,
pp. 131-136, June 1996.

[2] J.E. Carletta and C.A. Papachristou, ªBehavioral Testability
Insertion for Datapath-Controller Circuits,º J. Electronic Testing,
vol. 11, no. 1, pp. 9-28, Aug. 1997.

[3] L. Avra, ªAllocation and Assignment in High-Level Synthesis for
Self-Testable Data-Paths,º Proc. Int'l Test Conf., pp. 463-472, 1991.

[4] A. Orairoglu and R. Karri, ªAutomatic Synthesis of Self-Recover-
ing VLSI Systems,º IEEE Trans. Computers, vol. 45, no. 2, pp. 131-
142, Feb. 1996.

[5] S.S. Ravi, R. Narasimhan, and D.J. Rosenkrantz, ªEfficient
Algorithms for Analyzing and Synthesizing Fault-Tolerant Data-
paths,º Proc. 1995 IEEE Int'l Workshop Defect and Fault Tolerance in
VLSI Systems, Nov. 1995.

[6] A. Antola, V. Piuri, and M.G. Sami, ªOptimising High-Level
Synthesis for Self-Checking Arithmetic Circuits,º Proc. 1996 IEEE
Int'l Symp. Defect and Fault Tolerance in VLSI Systems, Nov. 1996.

[7] A. Antola, V. Piuri, and M.G. Sami, ªA High-Level Synthesis
Approach to Optimum Design of Self-Checking Circuits,º Proc.
European Design Automation Conf. (EURODAC '96), Sept. 1996.

[8] B. Iyer and R. Karri, ªIntrospection: A Low Overhead Binding
Technique during Self-Diagnosing Microarchitecture Synthesis,º
Proc. Design Automation Conf. '96, pp. 137-142, June 1996.

[9] Y.H. Choi, D.S. Fussel, and M. Malek, ªToken-Triggered Systolic
Diagnosis of Wafer Scale Arrays,º Proc. Int'l Workshop Wafer Scale
Integration, July 1985.

[10] R.A. Evans, J.V. McCanny, and K.W. Wood, ªWafer Scale
Integration Based on Self-Organization,º Proc. Int'l Workshop Wafer
Scale Integration, July 1985.

[11] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[12] A. Antola, V. Piuri, and M.G. Sami, ªSemi-Concurrent Error
Detection in Data Paths,º Proc. 1997 IEEE Int'l Symp. Defect and
Fault Tolerance in VLSI Systems, Oct. 1997.

[13] A. Antola, V. Piuri, and M.G. Sami, ªA Low-Redundancy
Approach to Semi-Concurrent Error Detection in Data Paths,º
Proc. Design, Automation, and Test in Europe Conf. (DATE98), Feb.
1998.

[14] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis. Boston:
Kluwer Academic, 1992.

[15] G. Buonanno, M. Pugassi, and M.G. Sami, ªA High-Level
Synthesis Approach to Design of Fault-Tolerant Systems,º Proc.
1997 IEEE VLSI Test Symp., Apr. 1997.

[16] N. Dutt and C. Ramachandran, ªBenchmarks for the 1992 High
Level Syntehsis Workshop,º Technical Report #92-107, Univ. of
California at Irvine, Oct. 1992.

[17] R. Camposano, ªPath-Based Scheduling for Synthesis,º IEEE
Trans. Computer-Aided Design, vol. 10, no. 1, Jan. 1991.

[18] R.A. Bergamaschi, S. Raje, I. Nair, and L. Trevillyan, ªControl-
Flow Versus Data-Flow-Based Scheduling: Combining Both
Approaches in an Adaptive Scheduling System,º IEEE Trans.
Very Large Scale Integration Systems, vol. 5, no. 1, Mar. 1997.

[19] G. Lakshminarayana, A. Raghunathan, and N.K. Jha, ªBehavioral
Synthesis of Fault Secure Controller/Datapaths Based on Aliasing
Probability Analysis,º IEEE Trans. Computers, vol. 49, no. 9, Sept.
2000.

[20] D.M. Blough, F.J. Kurdahi, and S.Y. Ohm, ªHigh-Level Synthesis
of Recoverable VLSI Microarchitectures,º IEEE Trans. Very Large
Scale Integration Systems, vol. 7, no. 4, Dec. 1999.

Anna Antola received the DrEng degree in
electronics engineering from the Politecnico di
Milano in 1983 and the PhD degree from the
Politecnico di Milano in 1989. From 1989 to
1992, she was a researcher at the C.N.R.
(Italian National Research Council). From 1992
to 1995, she has been an associate professor of
computer science at the UniversitaÁ di Pavia.
Since 1995, she is an associate professor of
computer science at the Politecnico di Milano.

Her research interests include dedicated architectures for image and
signal processing, VLSI and WSI devices, high-level and application
specific synthesis, self-checking high-level synthesis techniques, and
fault and defect tolerance. Prof. Antola is a member of the IEEE, the
IEEE Computer Society, and EUROMICRO.

464 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001

Fabrizio Ferrandi received the DrEng degree
(cum laude) in electronical engineering from the
Politecnico di Milano, Italy, in 1992, and the PhD
degree in information and automation engineer-
ing (computer engineering) from the Politecnico
di Milano in 1997. Currently, he is an assistant
professor of electrical and computer engineering
at the Politecnico di Milano. His research
interests include synthesis, verification, simula-
tion, and testing of digital circuits and systems.

He is a member of the IEEE and the IEEE Computer Society.

Vincenzo Piuri obtained the PhD degree in
computer sngineering in 1989 from the Politec-
nico di Milano. From 1992 to September 2000,
he was an associate professor in operating
systems at the Politecnico di Milano. Since
October 2000, he has been a full professor in
computer engineering at the University of
Milano. His research interests include computer
arithmetic, application-specific processing archi-
tectures, fault tolerance, theory, and industrial

applications of neural networks. His results have been published in more
than 120 papers in books, international journals, and proceedings of
international conferences. He is a senior member of the IEEE and a
member of the ACM, IMACS, INNS, and AEI. On the IEEE Test
Technology Technical Council, he is chair of the Technical Committee
on Defect and Fault Tolerance. He has been an associate editor of the
IEEE Transactions on Instrumentation and Measurement since 1998
and the IEEE Transactions on Neural Networks since 2001.

Mariagiovanna Sami obtained the DrEng de-
gree in electronic engineering from the Politec-
nico di Milano in 1966 and her Libera Docenza
(Computing and Switching Theory) in 1971.
Since graduation, she has been with the
Department of Electronics and Information,
Politecnico di Milano, where she obtained
various research and teaching positions and
where she has been a full professor since 1980.
Her research interests are in the areas of fault

tolerance, highly parallel VLSI and WSI architectures, and high-level
synthesis. She has published more than 150 papers in international
journals and conference proceedings; she is coauthor of the book Fault
Tolerance through Reconfiguration in VLSI and WSI Arrays, published
by MIT Press. She is a senior member of the IEEE and a member of
EUROMICRO. She was editor-in-chief of the EUROMICRO Journal and
she was a member the editorial board of the IEEE Transactions on
Computers.

. IEEE Computer Society publications cited in this article can be
found in our Digital Library at http://computer.org/publications/dlib.

ANTOLA ET AL.: SEMICONCURRENT ERROR DETECTION IN DATA PATHS 465

