
358 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 40, NO. 3, MAY 2010

Design of an Automatic Wood Types Classification System
by Using Fluorescence Spectra

Vincenzo Piuri and Fabio Scotti

Abstract—The classification of wood types is needed in many industrial
sectors, since it can provide relevant information concerning the features
and characteristics of the final product (appearance, cost, mechanical prop-
erties, etc.). This analysis is typical in the furniture industries and the wood
panel production. Usually, the analysis is performed by human experts, is
not rapid, and has a nonuniform accuracy related mainly to the operator’s
experience and attention. This paper presents a methodology to effectively
cope with the design of an automatic wood types classification system based
on the analysis of the fluorescence spectra suitable for real-time applica-
tions. This paper presents an experimental set up based on a laser source,
a spectrometer, and a processing system, and then, it discusses a set of
techniques suitable to extract features from the spectra and how to exploit
the extracted feature to train an inductive classification system capable to
properly classify the wood types. Obtained experimental results show that
the proposed approach can achieve a good accuracy in the classification and
requires a limited computational power, hence allowing for the application
in real-time industrial processes.

Index Terms—Automatic spectra analysis, automatic wood classification,
computational intelligence.

I. INTRODUCTION

T HE AUTOMATIC wood classification is a problem that is present
in many industrial contests such as the furniture industries and

the wood panel production [1]. Different woods have different aspects,
properties, and costs. The correct classification of the wood type is very
important to guarantee that the final product has the required features
and characteristics. For example, in the production of wood panels, the
wood type influences the quantity of the glue that must be used in the
panel to guarantee the proper mechanical properties. On the other side,
the glue has a great impact on the final cost of the panel and effects
the overall environmental impact. In the paper industry, the wood type
influences the final quantity of the cellulose in the paper, and hence,
the quality of the paper [2].

Usually, the analysis of the wood type in the wood industries is
performed by human experts by visual inspection, but this procedure
is not rapid and presents a nonuniform accuracy due to the operator’s
capabilities and tiredness. More expensive chemical tests are available,
but they are slow and can be done only on small samples of the produc-
tion. It is known that the wood kind can be estimated from the wood
emitted spectrum, but, unfortunately, the interpretation of the wood
fluorescence spectrum is not a simple task that can be easily achieved
by an operator in real-time industrial application. In fact, in the case
of the wood-type identification, there are no unique set of peaks in
the spectrum for each wood type and even small differences in the
spectrum pattern are meaningful. As a results, the human identifica-
tion of the wood type is not accurate and/or repeatable. In addition,
more and more applications in the wood panel industry requires the
usage of enormous quantities of recycled wood as a basic material,
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even in chopped and mixed slices (a recent plant can produce up to
3000 m3 /day of panels). In this applicative context, this kind of basic
material is not suitable to be classified with a manned system, and the
usage of a fast and accurate automatic identification system capable to
control a continuous flow of samples coming from the feeding line of
the plant is strongly required. To the best of our knowledge, no com-
mercial systems are available in the market and no studies on automatic
wood classification systems based on fluorescence spectra are present
in the literature.

This paper describes the design of an accurate and continuously
uniform method for the automated classification of the wood types by
a contactless measurement and classification of the wood by visible
and near-IR (NIR) spectra. Experiments has been made in order to test
a classification capability up to 21 different wood types. Preliminary
results has been presented in [3].

This paper is structured as follows. Section II describes the state of
the art of automatic wood analysis and classification, while Section III
focuses on the proposed design methodology and the creation of each
module composing the system. The section describes how to extract a
proper feature set, and create and train different models of inductive
classification systems, as well as the creation of the training and testing
datasets of wood spectra. The presented methodology has shown effec-
tive results with different classification models such as the k-nearest
neighbor classifiers, linear, quadratic Bayesian classification systems,
and supported vector machines (SVMs). Finally, it follows with the
discussion of the accuracy and the performances of the overall system.

II. STATE OF THE ART OF THE AUTOMATIC

WOOD-TYPE ANALYSIS

In the literature, the automatic analysis of timbers is achieved by
following two main approach: image-based processing systems and
spectrum-based processing systems. In the first category, the specific
wood patterns, colors, and surface properties are analyzed by means of
a specific illumination system and one or more cameras. In the latter
category, a proper source of radiation is used to excite the wood surface
in order to analyze the emitted spectrum.

In the literature, most systems based on image processing techniques
deal with the identification of surface defects (for example, knots, resin
drops, cracks, broken board edges, etc.) in order to classify the boards
in different quality classes during the production [4]–[7]. A system for
tracking single wood board during the production is presented in [8].
This system exploits a source of light and a color camera to acquire
and store the specific wood pattern of the surface of each single wood
board. This system processes the images in a very similar fashion to
the systems used for the human fingerprints, since the input image
patterns are normalized, warped, and then converted into a compress
representation (called image packet) capable to identify the board in a
large repository. a similar approach capable to identity a single board
based on the peculiar signal pattern produced by the local microwave
absorption is presented In [9]. The paper demonstrated that this signal
is discriminant, since each board has different knots and densities along
the three dimensions.

The identification of the wood species by image processing has been
effectively addressed by the classification of the wood surface patterns.
For example, the species of rain forest woods are recognized in [10]
by using extracting textural wood features by using a co-occurrence
matrix approach, then a trained neural network is used to achieve the
final classification of the sample. The system had been tested with a
dataset of 20 species obtaining a classification accuracy of 95% (tests
had been carried out with only ten samples for each wood kind during
the validation). A very similar approach had been tested in [11] on
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a dataset composed of six wood species, achieving a classification
accuracy of 80%.

A second approach for wood-type analysis is based on the the spec-
trum analysis. In this paper, we present an innovative methodology
for the automatic characterization of wood samples has been carried
out by fluorescence spectroscopy. Such approach presents some advan-
tages in comparison with those proposed in literature that are mainly
based on vibrational spectroscopic methods: such NIR [15], mid-IR
(MIR) [16], [17], and Fourier-transform Raman spectroscopies [18],
[19]. In particular, the Raman spectrum had been processed in [18]
with genetic algorithms in order to identify the relevant lines in the
Raman wood spectrum, and differentiate softwoods, hardwoods, and
tropical woods, while in [19], a simple neural network was used to
classify temperate hardwoods from softwoods. Unfortunately, despite
the richness of the providing information, the vibrational spectroscopy
presents several drawbacks for the industrial application both for costs
and experimental difficulties for its implementation in online and real-
time measurement systems operating in industrial environment. For
example, all these techniques require normally long integration times
and expensive cooled detectors. In particular, IR measurements are af-
fected by some environmental variables that are not easily controllable
in the production line, such as the presence of thermal sources, dust,
and humidity. As a matter of fact, the tail of the thermal radiation in the
detectors sensitivity range produces a noisy background, the random
presence of dust produces several artifacts in a long-time measurement,
and some water vapor absorption bands overlap the wood spectral fea-
tures useful for the recognition.

Differently from the techniques based on vibrational spectroscopy,
fluorescence spectroscopy, on other hand, working in the visible spec-
tral region has a higher SNR, which is unaffected by thermal noise or
water absorption, and furthermore, the high sample rate, for example,
allows to reject measurement on flying particles. Fluorescence also
represents convenient choice due to the availability of lower cost com-
ponents, such as the modern high-performance silicon-based charge-
coupled device (CCD) detector and high-power diode-pumped solid-
state (DPSS) laser. The use of the modulation capability DPSS laser
(up to 100 KHz), together with a synchronous detection, allows a fur-
ther improving of the SNR, fast measurements, and subtraction of the
environmental light. All these features make fluorescence spectroscopy
particularly suited for real-time measurement system operating in an
industrial environment. In the next section, we propose a new method-
ology based on the fluorescence spectroscopy to effectively cope with
the automatic wood-type classification.

III. MEASUREMENT SYSTEM

The proposed method is sketched in Fig. 1. The acquisition system
adopts a laser source in order produce fluorescence in the wood sample
placed/transported on a flat surface (for example, a conveyor belt). The
emitted radiation is then acquired by a spectrometer that produces in
output the measured spectrum with a fixed frequency. The obtained
spectrum is then preprocessed by the prefiltering module, and then,
salient features are extracted. The last module perform the classifica-
tion task of the extracted features and produce the final classification of
the wood type. The method is general, since there are no particular con-
strains with respect to the wood type, the shape of the analyzed sample,
and samples can be also in movement. In the following, the design of
each module and parameters of the overall system are discussed.

A. Acquisition System

The prototype measurement system, we set up, consists of a minia-
ture spectrometer and a DPSS laser operating at 473 nm, respectively,

Fig. 1. General scheme of the proposed method.

Fig. 2. Structure of the acquisition system.

for fluorescence detection and excitation. Fig. 2 shows in detail the
composition of the acquisition system. The exciting laser beam, with
modulable optical power up to 50 mW, impinges on samples at α an-
gle with respect to the vertical direction corresponding to the axis of
the collection optics. The spectrometer, provided with an adjustable
objective lens focusing the collected light into the entrance slit, is or-
thogonally positioned z millimeters above the sample. A long-pass
filter inserted between the sample and spectrometer removes the laser
line from the collected light. The geometry of the setup (mainly the
parameters α and z) must be tuned properly in order to achieve the
maximum signal in input to the spectrometer. In our setup, the tuning
has been achieved manually, but, of course, it is possible to adopt an
autofocus system capable to vary the distance z of the lens accordingly
to the position the wood sample if its position or thickness can change in
time.

The spectrometer must be capable to acquire the fluorescence in-
tensity in the correct band of wavelengths, which can be estimated
as ranging from 500 up to 1000 nm. Also, the spectral resolution of
the spectrometer plays an important role in classification accuracy: a
resolution of 1 nm can be considered as largely sufficient to detect
all salient patterns and transitions in the fluorescence spectrum. The
spectrometer must also be chosen by taking into account the minimum
integration time. In the laboratory setups, where the wood sample is
not in movement, any particular integration time is not required. Con-
versely, in the industrial setups, the wood samples are often moving
with respect the acquisition system (conveyer belts, chains, etc.). In
this case, it is crucial to ensure that the integration time is sufficiently
short in order to acquire the fluorescence spectrum of the same moving
sample.
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Fig. 3. Structure of the proposed classification system.

An optical long-pass filter has been inserted between the sample
and spectrometer (see Fig. 2) in order to remove the laser line from the
collected light and avoid saturation effects in the spectrometer. As such,
only the fluorescence spectrum and two others lines (the subharmonic
of the laser and the line produced by the pumping system) will be
present in the collected radiation by the spectrometer allowing for a
better exploitation of the dynamics of the device.

B. Preprocessing System

The exact relationship between the shape of the spectra and the wood
types is not well known, hence it is not possible to directly design an
algorithm for a classification system. On the contrary, the capability
of the inductive classifiers to learn input–output relationships from
examples can be exploited to create a proper classification system [20],
[21]. The usage of an inductive classifier also implies the choice of a
proper method to extract salient features from the input signal to be
used as an input to the classifier.

In this paper, we propose a structure of the classification system
partitioned in four main modules (see Fig. 3) achieving the following
phases:

1) acquisition of the input spectra and preprocessing (N sample
vectors);

2) integration of the spectrum in M contiguous bands;
3) feature selection/extraction of the L values;
4) classification of the wood using the L values.
In the following section, the design steps required to achieve the

modules are given and compared with different techniques known in
the literature.

C. Preprocessing Algorithms

Under the described assumptions, the typical output spectra obtained
by the described acquisition system is composed by three main parts
(see Fig. 4). On the bottom part of the wavelength axis, no information
is present, since the optical filter cuts the principal laser line and all
other contributions. In the second part, which starts from about 500 nm,
the wood fluorescence is present and it represents the salient part of the
signal. In the third part of the acquired spectrum, a laser subharmonic

Fig. 4. Prefiltering of the input signal by cropping and normalization.

can be present, typically superimposed to the right tail of the wood
spectrum (together with lines of the laser optical pumping system).
The preprocessing module aims to extract and normalize the segment
containing the wood fluorescence from the overall acquired spectrum.

Since the wavelength range of the wood fluorescence does not de-
pend on experiment conditions, but is related only on the material, no
particular algorithms have to be used to adaptively select the partition
of the spectrum. In our experiments, we fixed the region of interest of
the spectrum from λ1 = 490 nm to λ2 = 750 nm.

All parts of the spectrum signal can also be differently employed as
feedback for an autofocus system, or can be used to manually tune the
setup during the experiment, as described in the previous section, in
order to maximize the spectral power of the fluorescence.

In any case, to correctly classify the wood sample, the intensity of
the fluorescence spectra must be normalized in order to correct the
effects related to the sample absorption, which can be very different
from point to point. A first approach encompassed the usage of the
intensity signal of laser subharmonic (at 946 nm) or of the pumping
diode (at 808 nm) as reference for a normalization operation. As such,
given the output of the spectrometer I(λ) at different wavelength λ,
the normalized spectral power P1 (λ) is given by

P1 (λ) =
I(λ)

maxλ2 ≤λ
(I(λ))

. (1)

Another approach that can be used to normalize the input signal
I(λ) uses as reference the maximum value of the fluorescence range.
In this case, the normalized spectral power P (λ) is given by

P2 (λ) =
I(λ)

maxλ1 ≤λ≤λ2
(I(λ))

. (2)

Fig. 5 plots the results of the application of this prefiltering method
applied to the input spectra of the following wood types: Wild Cherry,
Oak Chestnut, Walnut, and Larch. The main assumption that we assume
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Fig. 5. Examples of prefiltered inputs spectra.

is that the emitted spectra of the different wood types are enough
different to be classified with accuracy.

The obtained vectors P (λ) can be directly used to extract fea-
tures, or—differently—it can be applied as a further preprocessing
method in order to better enlighten the differences between the pat-
terns of the different woods. This method subtracts to the values of
P (λ) the mean pattern obtained by averaging K testing measures
{P 1 (λ), P 2 (λ), . . . , P L (λ)} taken with different wood types, hence
producing the transformed vector P ′(λ) where

P ′(λ) = P ′(λ) − 1
K

K∑

i=1

P i (λ). (3)

D. Feature Extraction and Selection

For any of the presented preprocessing methods, the acquisition
system produces a vector of N samples for each wood acquisition. If
the spectral resolution of the spectrometer is elevated, the cardinality
of the input can be very high (N = 242 in our experiments). It cannot
be considered as adequate to be directly used as input to the classifiers,
and hence, a reduction of the number of the input features has to be
considered (features selection/extraction) [21].

In supervised machine-learning problems, the task to identify m of
the N inputs that are more relevant/significant for the final classification
system is called feature selection. The most straightforward approach
to the this problem requires to examining all

(
m
N

)
possible subsets of

size m with the largest value of a feature of merit J() (for example,
the accuracy of the classification system). Unfortunately, this simple
approach is most of the times unfeasible due to the combinatorially
grow of the number of subsets to be tested even with small values of m
and N . A wide literature on this methods is available, for example, in
[20], an extensive review is published for further reference. A particular
approach suitable to reduce the input cardinality in the feature-selection
framework encompasses the usage of the wrappers algorithms [12],
[13]. This task is accomplished by means of a module called inducer
that processes the whole set of N inputs on a training partition of
the available dataset estimating the optimal (or suboptimal) subset of
m inputs capable to maximize a defined figure of merit J(). In this
paper, we will apply both classical greedy feature selection algorithm
like sequential forward selection (SFS) sequential backward selection

(SBS) and custom wrappers in order to identify which bands are more
relevant for the wood classification problem. Further details will be
given in the experimental section.

The reduction of the dimensionality of the input space can be
achieved by using different methods [20] such as the feature-extraction
framework. The most popular technique is the principal components
analysis (PCA) that can compress most of the variation measured in the
overall spectrum into a minor number of components [22]. Since the
PCA-like mapping mixes the input components into a reduced set of
new features, the direct relationship between the regions of the spectra
and their importance in the wood classification is less explicit [23]. Sim-
ilar approaches in the literature are based on the neural networks [19],
and the genetic algorithms [18]. The linear prediction models were
produced in [24] by using multivariate analysis and regression meth-
ods on a very specific application: the compression wood in Norway
spruce (Picea abies). The spectra coming from a satellite spectrometer
has been classified in [25] by using self-organizing maps.

This feature-extraction approach can be considered as functions
f () capable to map the N prefiltered input samples vector P =
{P (λ1 ), P (λ2 ), . . . , P (λN )} into a vector of L new features F. For
instance, in the case of the PCA mapping, the function f () is given the
following linear operation:

F = f (P) = WP (4)

where the matrix W is obtained by the PCA by considering only the
first L singular vectors

W = PCA(D, L). (5)

The NxK matrix D is a data matrix where columns are vectors of
prefiltered input samples obtained in K experiments.

The approach that we propose aims to integrate the spectral en-
ergy into L fixed bands in order to produce a vector of L elements,
which can be used as input to the classification system (feature vector).
This approach very easily permits to test the functioning of the system
with different spectral definitions of the spectrometer, and to directly
identify which bands of the spectrum are more relevant into the clas-
sification problem. Under this assumption, given the N preprocessed
normalized spectral power P′ = {P ′(λ1 ), P ′(λ2 ), . . . , P ′(λN )} ob-
tained by uniform sampling, the L extracted feature elements of vector
F1 = {f1 , f2 , . . . , fL } are given by

fi =
1
∆

∆ i∑

j=∆ (i−1)+1

P ′(λj ) (6)

where λ1 is the wavelength where the preprocessed input spectrum
begins (see Fig. 4, bottom subplot) and ∆ = N/L is the downsampling
rate of the spectral power. Without loss of generality, L can be fixed in
order to ensure that ∆ is an integer. Differently, the downsampling of
the spectral power P′ to the feature vector F can be done by classical
techniques. In the following, we refer to this feature-extraction method
as band integration.

A completely different approach aims to extract the features form
the P (λ) by mapping the input vector P (λ) as a polynomial P̂ (λ) of
degree L with L > 1, where

P̂ (λ) =
L∑

i=1

αiλ
i + α0 (7)

and then exploiting the polynomial coefficients as a feature vector of
L values F2 = {α0 , α1 , . . . , αL }. In our experiments, the coefficients
have been obtained by the least-squares method. This approach can very
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effectively reduce the dimensionality of the input space, but, otherwise,
it is not possible to further extract the significance of each extracted
wavelength band since the information present in the input sample has
been embedded in the L coefficients. Large values of L should be
avoided due to the high possibility to have a bad-conditioned inversion
matrix in the least-square procedure. In the following, we refer to this
feature-extraction method as polynomial coefficients.

A large number of features extraction and selection methods are
available in the literature, but their comprehensive description is be-
yond the scope of the presented paper. A very good review of such
methods can be found in [20], where main available approaches are
categorized and compared. In the experimental section, the three pre-
sented extraction methods are compared and discussed when adopted
to identify the different wood types by using a supervised classifier.

E. Creation and Testing of the Classification System

In this section, the last four phases of the design will be described:
the creation of the dataset, the creation of the classifiers, the training
phase of the classifiers, and the accuracies estimation of the proposed
classification systems.

As previously described, since a model for classifying the wood
types from their spectrum patterns is not available, the usage of in-
ductive classifiers has been introduced. Such classifiers can learn the
classification rules from a proper dataset of examples previously clas-
sified from a supervisor by using a learning algorithm. The estimation
of the accuracy of the inductive classifiers is mostly achieved by cross-
validation techniques [27], and, as a consequence, it is required to
divide the examples dataset in (almost) two partitions.

The first partition (the training dataset) is used to tune the system’s
parameters and train the inductive classifier. In some approaches, the
training dataset is split in more parts, each used for one of these tasks:
parameters tuning and classifiers learning will be performed by using
separated subsets of data [28]. For example, a subset of the training
dataset can be used to test the generalization capability of the classifier
directly during the learning phase, as it is typical in neural networks
applications [28]. The second partition (validation dataset) is used only
once to estimate the system classification error. More accurate tech-
niques for classification error estimation can be used (e.g., the N -fold
validation and the leave-one-out), but their computational complexity
becomes very high for large datasets [20], [28].

It is worth noting that, in order to guarantee the generality of the
classification results, all the described operations that extract param-
eters from the available dataset (in this paper, the prefiltering method
described in (3) and the PCA method) must be processed with a sepa-
rate dataset or by considering only the training partition of the available
dataset. Differently, any usage of the validation dataset to calibrate the
system or to process parameters of the algorithms can lead to poor
generality of the results, in particular, to an optimistic estimation [29]
of the classification error. In the literature, a great number of inductive
classification systems are available [20] with very different peculiari-
ties. In this paper, we propose and compare classifiers belonging to four
main families: the nearest neighbor classifiers, the linear and quadratic
classifiers, and the SVMs.

The first model that we adopted is the linear Bayes normal classifier
(LDA in the following), a method that builds a linear classifier between
the classes of the dataset by assuming normal densities with equal co-
variance matrices in the input data [26]. Based on similar hypothesis,
but, instead, using a second-order mapping of the input, we considered
the quadratic Bayes normal classifier (QDC) [12], [16]. As third family
of classifier systems, we adopted the well-known k-nearest neighbor
classifier with odd values of the parameter k (1,3, and 5). These clas-

sifiers store in their memory the training samples and, each time that a
unclassified sample is put in input, the corresponding class is estimated
by selecting the k stored samples that are closer to the input regarding
the selected metric (the Euclidean metric in our experiments). A voting
process is then performed, and the unclassified sample is assigned to
the class with the majority within the classes of the k selected samples.

A different approach can be considered by adopting SVMs [30].
SVMs are capable to separate a training-labeled dataset with a hyper-
plane that is maximally distant from the different classes present in the
feature space. In case of dataset that are not linearly separable, kernel
functions are adopted in order to realize a nonlinear mapping of the
feature space capable to separate the classes. By this point of view, the
SVM hyperplane expressed in the transformed feature space can be
considered as a nonlinear boundary function in the input space. With-
out loss of generality, let us assume that the training dataset contains n
features vectors F labeled with values yi ∈ {−1, +1}, k() is a kernel
function capable to map the input features vectors F into a transformed
feature space T ∈ �N , and b is a constant real value, then the decision
boundaries of the SVM can be represented as follows:

SVM(F) = sign (〈w, k(F)〉 − b) (8)

where 〈, 〉 is the inner product. The parameters of the SVM (the hy-
perplane (w, b)) can be found by maximizing the following quantity
called margin

γ = min
i

yi (〈w, k(F)〉 − b) (9)

where the quantity (〈w, k(F)〉 − b) represents the distance between
the feature points F and the decision boundary of the SVM. In (9),
the product yi (〈w, k(F)〉 − b) is positive for correctly classified sam-
ple and vice versa, and hence, the maximization operation allows for
finding the coefficients that better separate the classes by searching the
larger margin value.

SVMs have the characteristic to successfully deal with high dimen-
sional feature spaces better than traditional learning paradigms [30].
This property can be of great help in our context, since the extracted
feature elements (vector F) have high dimensionality, especially by
using the feature-extraction method in (6). On the contrary, the training
procedures are very slow, and the choice of parameters and kernels of
the SVMs are not trivial. In our experiments, we focused on SVMs
based on Gaussian kernels, and considered the linear and the quadratic
form.

The classification error of the presented classifiers has been esti-
mated by using the cross-validation technique with R rotations [15].
In this case, the error estimation is produced by averaging the error
obtained with R different training phases where only a portion of 1/R
of the sample is used in validation and the remaining samples in the
training phase. After each training–validation phase, the portion of
1/R sample used in the training phase is rotated in validation and new
samples will be used in the training phase. After R rotations, the pro-
cess is then stopped and the mean classification error is computed. The
advantages of this method are that all samples have been used to test
the systems in training and validation, and the obtained error gives a
realistic estimation of the final performance of the classification system
when it will work in similar conditions in the applicative context.

If the final operative conditions will be different, a new error-
estimation procedure should be considered in order to control the
variations in performances occurred. In this case, a new dataset of
classified sample has to be collected and a new cross-validation session
is required. It is worth noting that R different classification systems will
be created for each of the R phases of the test, and hence, a criterion
to select the final classifier to be embedded in the classification system
is required. Unfortunately, the theory of inductive classifiers gives no
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general method in order to select the “proper” classifier between the R
that have been tested [29]. As a rule of thumb, the one with the lower
classification error can be selected. Notably, when R is high (more
then 10, for example), the size of the dataset is very large (hundreds
of samples) and when the samples are randomly mixed in the dataset,
the differences between the trained classifiers tend to be strongly re-
duced. In order to test the real advantage of using feature-extraction
techniques in this applicative case, we considered the application of
the PCA technique as preprocessing for the LDA, QDC, and kNN (k
= 1, 2, and 3) classifiers. In the following, we refer to these systems as
PCA+LDA, PCA+QDC, and PCA+1NN, respectively.

IV. EXPERIMENTAL RESULTS

A. Setup of the Acquisition Module

The prototype measurement system that we have set up consists of
a miniature spectrometer (Ocean Optics USB2000) and a frequency-
doubled DPSS laser operating at 473 nm, respectively, for fluorescence
detection and excitation. Fig. 2 shows in detail the composition of the
acquisition system. The exciting laser beam, with modulable optical
power up to 50 mW, impinges on samples at α angle with respect to
the vertical direction corresponding to the axis of the collection optics.
The spectrometer, provided with an adjustable objective lens focusing
the collected light into the entrance slit, is orthogonally positioned z
millimeters above the sample. A long-pass filter, with cutoff wavelength
of 500 nm inserted between the sample and the spectrometer, removes
the laser line from the collected light.

The fluorescence intensity is then measured in the spectral range be-
tween 500 and 1000 nm at 1 nm resolution and with 10 ms of integration
time. The intensity of fluorescence spectra have been normalized using
as reference signal the intensity of laser subharmonic (at 946 nm) or
of the pumping diode (at 808 nm), in order to correct the effects due
to sample absorption. Such reference signals, which will be employed
as feedback for an autofocus system, have been manually maximized
during the experiment. The procedure aims to empirically identify the
better angle α and distance z capable to maximize the overall power of
the signal fluorescence captured by the spectrometer according to the
focal length of its objective lens. In our experiments, best results have
been obtained with α = 45◦ and z = 12 mm. Fig. 6 reports the final
acquisition system used for the experiments.

B. Datasets and Classification Systems

The datasets have been created by using a set of the 21 different
wood types (of certified origin purchased at Woodtechnology Gmbh)
belonging to the most common species. Twenty spectra for each sample
have been acquired in different points by moving the samples under
irradiation. During the measurements, we ensured to probe all wood
zones, namely, heartwood, sapwood, and growth ring. The 21 wood
types belonging to the dataset with the caption number assigned by the
provider are the following: 1) Wild Cherry; 2) Oak Chestnut; 3) Walnut;
4) Larch; 5) Wild Pear Tree; 6) Poplar; 7) Cembar Pine; 8) Beech Tree;
9) Alnus incana; 10) Linden Tree; 11) Fraxinus xanthoxyloides; 12)
Scots Pine; 13) Oak Tree; 14) Spruce; 15) Maple; 16) Taxus baccata;
17) Elm; 18) Silver Fir; 19) Birch Tree; 20) Black Locust;
21) Carpinus betulus.

The first classification problem that we considered-problem A—is
the binary classification between the conifer and broad-leaved wood
spectra. This problem is related to the fact that, in some specific ap-
plications such as the wood panel production, the properties of the
wood types belonging to the same class (conifer or broad-leaved) can
be considered as similar. The second classification problem that we

Fig. 6. Picture of the acquisition system. (Left) DPSS laser of 473 nm excites
(bottom right) fluorescence of wood sample, while the miniature spectrometer
above acquires the emission spectrum. The laser line is blocked by an optical
long-pass filter placed on the spectrometer.

considered—problem B—is the classification of the 21 different wood
types. Problem B can be considered as more difficult than problem A,
since the number of classes is ten time more with the same input data.

The classification error of the cited systems has been estimated using
the cross-validation technique (using ten rotations). The test has been
applied to all cited classifiers producing the mean classification error
and its standard deviations. For the sake of comparison, in the results of
tables and figures, when a classifier X has been trained by exploiting the
principal component analysis, it is reported as a new different classifier
with the label PCA+X.

As first step, we applied three different methods for feature selection
directly on the row dataset produced from the sensor. The goal was to
identify if some specific bands in the spectrum are more relevant to the
classification problem. In particular, the dataset were processed with the
SFS and SBS algorithms described in [20] (adopting as kernel the k-NN
classifier with k = 1, 3, and 5 tested with the ten-fold cross-validation
technique), and with the wrapper algorithm (W) specifically designed
for classification in industrial application proposed in [14]. Results
indicate that there is not a specific subset of bands that are particularly
relevant for the classification task; in fact, many different sets of features
produce classifiers with very similar final accuracies, and, in the case
of dataset mixing, the selected subsets are different. Results indicate
that the relevant information is probably distributed along the entire
spectrum range and is not concentrated in specific bands or subbands.

As a second step, we considered the effect of the two different
prefiltering methods presented in (1) and (2). Experiments showed that
the latter normalization method tend to better preserve the peculiar
patterns of the same wood sample during different acquisitions, and
hence, it has been preferred, since it tends to reduce the intraclass
separation of the samples without particularly worsening the interclass
separation.

The application of the method expressed in (3) aims to better sepa-
rate the spectrum patterns of different woods by subtracting the mean
spectrum processed on a subset of wood samples. The application of
this method allows for enlarging the interclass separation of the wood
sample, although a small worsening of the intraclass neighborhood is
added. Fig. 7 shows the application of the two method (also in different
order) to five examples of wood spectra. As can be seen, the applica-
tion of the prefiltering methods can greatly improve the separation of
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Fig. 7. Application of the techniques of normalization and suppression of the
mean wood spectrum to five different wood spectra. The methods labeled as
normalization and mean suppression corresponds to (2) and (3), respectively.
The application of the prefiltering methods increases the interclass separation
of the wood samples.

Fig. 8. Classification error of the proposed classifiers on the conifer/broad-
leaved problem (dataset A) by using the prefiltering methods (2) and (3) with
feature extraction (6).

interclass separations of the wood samples. Experiments showed that
the overall effect obtained by combining the prefiltering (2) and (3) can
be considered as positive, since the accuracy of all classifiers tested
with and without these two prefiltering methods has been enhanced
or, at least, did not worsen. For this reason, in the following, we will
adopt this configuration of the prefiltering module. The feature selec-
tion analysis (SFS, BFS, and W methods) has been repeated again after
the application of the prefiltering methods (1), (2), and (3), without any
significative enhancement in the final accuracy of the classifier.

1) Feature Extraction by Band Integration: In order to understand
the effect of the spectral resolution of the available power spectra, the
values of spectral power have been integrated in M bands of the same
size, as discussed in the previous section in (6). Figs. 8 and 9 plot the
accuracy results of the tested classifiers with respect to the number
bands M used as input to the classification systems. Concerning the
dataset A (the conifer/croad-leaved problem), the best classifier has

Fig. 9. Classification error of the proposed classifiers on the 21-types problem
(dataset B) by using the prefiltering methods (2) and (3) with feature extraction
(6).

been the SVM model with a 1.07% accuracy on dataset A with an error
standard deviation of 0.2% when 32 spectral bands are used. Notably,
most tested classifiers show comparable performance in the range of
2%–4% classification error for a spectrum bar of N sample, where
N ranges from 5 to 25 for dataset A. Figs. 5 and 6 do not report the
classification error of the PCA+LDA and PCA+1NN classifiers, since
the application of the PCA does not significantly affect the classification
errors with respect to the LDA and 1NN classifiers.

Results indicate that the classification between conifer and broad-
leaved woods can be suitably achieved with different classification
systems with the proposed method with a remarkable accuracy. The
results of the classification of the 21 wood types show that the classifi-
cation can be achieved with a classification error of 6.4% with a 0.9%
standard deviation by the QDC algorithm when 16 spectral bands are
used.

The errors related to the two classification problems are very promis-
ing, since they are obtained by using a single spectrum acquisition. A
second method can also be considered: more than one spectrum acqui-
sition can be taken from the same point (or considering points that are
in a narrow neighborhood of the same wood sample). In this case, it is
possible to achieve different operations of classification from the same
points/area of the sample, and then, to process an average/voting oper-
ation on the class outputs. The averaging/voting method can probably
further reduce the classification errors effectively.

2) Feature Extraction by Polynomial Interpolation: The results of
the feature-extraction method based on the polynomial representation
of the input spectra in (7) are plotted in Figs. 10 and 11, where
the classification error of the tested classifiers is plotted against the
number L of the interpolation coefficients. This compact spectral
representation offers a good classification error in the conifer/broad-
leaved problem (dataset A) arriving to the minimum value of 2.9% by
using the QDC classification system with an error standard deviation
of 0.2%. In particular, three classification system presented similar
accuracy (QDC, PCA+LDC, and LDC classifiers). This best three
classifiers produced an error that is comparable to the one achieved
with the feature extraction by band integration. The approach of
feature extraction by polynomial interpolation is less accurate in the
21-wood-types problem (dataset B) achieving a classification error
of 8.9% with a error standard deviation of 0.2%. In this case, most
classifiers produced an accuracy above 10%, probably because this
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Fig. 10. Classification error of the proposed classifiers on the conifer/broad-
leaved problem (dataset A) by using the prefiltering (2) and (3) with feature
extraction (7).

Fig. 11. Classification error of the proposed classifiers on the 21-types prob-
lem (dataset B) by using the prefiltering (2) and (3) with feature extraction
(7).

feature-extraction method is less performing than the other two
methods that we presented in the identification of the complex class
boundaries that are present in dataset B.

Table I resumes the obtained results on the different datasets and
experimental conditions. All the tested classifiers achieve the classifi-
cation in a computational time, which ranges between 1 and 45 ms,
depending on the number of inputs (the M bands) and the complex-
ity of the algorithms. LDCs and 5NNs classifiers have the minimum
computational times and the maximum computational times, respec-
tively. All tests have been performed using a Pentium 1, 7-GHz, 1-GB
RAM, using Windows XP Professional. The whole system has been
implemented in MATLAB by exploiting the available toolboxes. The
obtained computational times suggest that is possible to adopt the pro-
posed classification method in real-time applications.

TABLE I
MAIN EXPERIMENTAL RESULTS

V. CONCLUSION

This paper presented a method for the automated classification of
wood types based on the analysis of fluorescence spectra. The proposed
method partitions the input spectra in different bands equally spaced.
The energy contained in each band is used in input to an inductive clas-
sifier. Results show a good classification accuracy up to 21 different
wood types. The presented approach has a general validity, and it can
be used with spectrometers of different resolutions and with different
classification systems, encompassing k-nearest neighbor classifiers,
and linear and quadratic Bayesian classification systems. The simple
experimental set setup and the limited overall computational complex-
ity permit the adoption of the proposed method in real-time applica-
tions.
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