
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 1999 3179

[7] T. Yang and K. Yao, “Numerical error control in sliding window systems
under finite precision arithmetics,” submitted for publication.

[8] T. C. Yang, “Finite precision error control and array implementation
of signal processing algorithms,” Ph.D. dissertation, Univ. Calif. Los
Angeles, 1997.

[9] T. J. Shepherd and J. G. McWhirter, “Modified givens rotations for
inverse updating in QR decomposition,” inProc. SPIE—Adaptive Signal
Process., 1993, vol. 2027, pp. 376–387.

[10] T. C. Yang and K. Yao, “Dual-state systolic architecture for recursive
least-squares updating and downdating,” inProc. 7th IEEE Workshop
VLSI Signal Process., Oct. 1994, pp. 316–325.

[11] H. Park and L. Eld́en, “Downdating the rank-revealing URV decompo-
sition,” SIAM J. Matrix Anal. Appl., vol. 16, no. 1, pp. 138–155, Jan.
1995.

A Parallel Implementation of the 2-D Discrete Wavelet
Transform without Interprocessor Communications

Francescomaria Marino, Vincenzo Piuri, and Earl E. Swartzlander, Jr.

Abstract—The discrete wavelet transform is currently attracting much
interest among researchers and practitioners as a powerful tool for
a wide variety of digital signal and imaging processing applications.
This correspondence presents an efficient approach to compute the two-
dimensional (2-D) discrete wavelet transform in standard form on parallel
general-purpose computers. This approach does not require transposition
of intermediate results and avoids interprocessor communication. Since it
is based on matrix-vector multiplication, our technique does not introduce
any restriction on the size of the input data or on the transform param-
eters. Complete use of the available processor parallelism, modularity,
and scalability are achieved. Theoretical and experimental evaluations
and comparisons are given with respect to traditional parallelization.

Index Terms—Discrete wavelet transform, interprocessor communica-
tions, matrix-vector multiplication, parallel processing.

I. INTRODUCTION

The discrete wavelet transform (DWT) [1]–[6] has been developed
recently as a feature extraction tool for signal and image processing
and has been shown to be efficient in comparison to traditional
signal processing techniques in several industrial and commercial
applications.

The massive computation required by the DWT can be met only
with suitable computing resources. If the application is well defined
and real-time operation is important, dedicated VLSI ASIC solutions
should be considered (see, e.g., [7]–[18]). In particular, two efficient
SIMD architectures are proposed in [10] to implement the 1-D and
the 2-D DWT’s, respectively. A pipeline-based realization of the 2-D
DWT is described in [18]. Other efficient architectures are presented
in [4], [15], and [17]. Whenever either the application or the desired
DWT processing is subject to change, VLSI implementation is not

Manuscript received September 29, 1997; revised April 29, 1999. The
associate editor coordinating the review of this paper and approving it for
publication was Dr. Elias S. Manolakos.

F. Marino is with the Dipartimento di Ingegneria Elettrotecnica ed Elet-
tronica, Politecnico di Bari, Bari, Italy.

V. Piuri is with the Department of Electronics and Information, Politecnico
di Milano, Milano, Italy.

E. E. Swartzlander, Jr. is with the Department of Electrical and Computer
Engineering, The University of Texas at Austin, Austin, TX 78712 USA.

Publisher Item Identifier S 1053-587X(99)08298-7.

suitable since it cannot easily accommodate varying specifications.
In addition, if only a few processors have to be constructed, the cost
of a dedicated VLSI realization is often too high. In these cases,
configurable VLSI systems (e.g., FPGA- and FPL-based structures)
can be adopted.

If high-speed operation is not mandatory, a feasible solution is the
use of traditional general-purpose parallel computers. If high-speed
operation is required, it is necessary to consider a highly parallel
system with many processing elements to achieve the required speed
without losing the flexibility of a general-purpose implementation.
During the application, design, and experimentation phases, flexibility
and modifiability of the implementation are attractive since they allow
for tuning the solution, possibly before starting an ASIC development
for volume production. In some applications (e.g., experimental
computer graphics, medical imaging, multimedia production), even
if no ASIC device is envisioned, the freedom of modifying the DWT
processing parameters is important to achieve high-quality results.
The use of general-purpose systems must be pursued also when the
application is not required to have a flexible and adaptable imple-
mentation, but the production volume is so low that development and
fabrication of a dedicated system is too expensive. In the literature,
only few researchers have dealt with the DWT implementation
on general-purpose machines. Parallelization of the 2-D DWT is
proposed in [19] by using thesnake sweeping algorithm[20]. Both
DWT data dependence and localization analysis have been studied in
[4] to design a distributed parallel memory/control architecture.

Maximum computational efficiency is an important issue in the use
of multiprocessors for DWT processing. Unfortunately, the research
mentioned above does not address how to avoid the interprocessor
communications required to transpose the intermediate results in the
2-D DWT. Solutions to this problem have been presented in literature
only for classical transforms, e.g., the DFT. An algorithm is presented
in [21] to compute aNk-pointk-D DFT (whereN is a prime number)
by evaluating(Nk

� 1)=(N � 1) independent one-dimensional (1-
D) DFT’s. In [22], the case of the 2-D DFT forN = p2 (with p

a prime number) andN = 2n is considered. In [23], the parallel
implementation of the algorithm described in [24] is discussed for
the AT&T BT100 binary-tree computer. This algorithm computes the
N �N 2-D DFT by means ofL = O(N) independentN -point 1-D
DFT’s and the discrete radon transform applied to the input matrix
created by usinglinear congruences-based criteria [24]; to solve these
congruences, simple formulas are provided only for some specific
values ofN [24]. In [25], thereduced transform algorithmis used to
balance communication and computation in a parallel machine, but
the sizes of the input array must be prime numbers. These algorithms
impose restrictions on the size of the input array, thus making them
nongeneral.

In [26], the matrix-vector multiplication approach has been shown
highly suitable and effective for DFT when the input data are
sequentially available since the matrix-vector multiplication does not
need the whole input data set to begin its operation. This approach
also provides also high modularity and scalability to satisfy a wide
range of applications. We have explored the use of the matrix-
vector multiplication approach to design a novel algorithm without
limitations on the size of the input array.

This correspondence presents an approach to compute the 2-D
DWT by using matrix-vector multiplications. Even though the matrix-
vector multiplication approach is a well-known technique, our idea
is to use this technique to avoid data transposition. Since we are

1053–587X/99$10.00 1999 IEEE

3180 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 1999

interested in maximizing the parallelism of the computation itself,
we have selected the intrinsically parallel filter bank algorithm [1]
to perform the DWT in standard form. Mallat’s algorithm [3] is
usually preferred in hardware implementations since the same circuit
can be used repeatedly with the same coefficients to generate every
transformation output, even though it has a higher latency. However,
these two algorithms are equivalent from the point of view of the
DWT results sinceMallat’s algorithm can be viewed as the unrolled
version of the filter bank. A suitable choice of the filter bank
coefficients achieves a result quality similar to that provided by
Mallat’s algorithm. Coefficients of one of these two approaches can
be easily transformed one into those of the other. In our software
implementation, the use either of the same or different coefficients
to generate each DWT output has no effect on the computational
complexity. Therefore, we take advantage of the intrinsic parallelism
of the filter bank to reduce the latency. Consequently, the application
domain of the proposed approach covers the areas typically tackled
by using Mallat’s algorithm.

This corespondence is structured as follows. The parallelization ap-
proach based on matrix-vector multiplication is defined in Section II.
Section III provides a theoretical analysis of the computational com-
plexity and the performance evaluation for an experimental imple-
mentation on the AT&T DSP3 parallel computer.

II. THE MATRIX APPROACH TO THE

PARALLEL IMPLEMENTATION OF THE 2-D DWT

The wavelet transform [1]–[6] is a mathematical technique that de-
composes a signal by using dilated/contracted and translated versions
of a single finite-duration basis function. In the literature, different
1-D DWT’s have been proposed according to the nature of the signal,
the time, and the scaling parameters. Any 1-D DWT can be viewed
as a parallel filter bank consisting ofM filtersGm(m = 1; � � � ;M),
where

m filter level;
M transform order;
H suitable lowpass filter.

All filters operate in parallel on the same input sequencexxx of sampled
input datax(s): Each filterGm is characterized byLm coefficients
and generates the sequenceyyy

m
havingN=2m componentsym(s)

ym(s) =
l=0

gm(l) � x(2m(s� l)): (1)

The lowpass filterH = bh(0); h(1); � � � ; h(l); � � � ; h(2M � 1)c gen-
erates the residual filtered sequenceyyy

H
havingN=2M components

yH(s)

yH(s) =

2 �1

k=0

h(k) � x(2Ms� k): (2)

The 1-D DWT of the sequencex is obtained by collecting the
M + 1 sequencesyyy

1
; yyy

2
; � � � ; yyy

M
; and yyy

H
: It is worth noting that

theN=2M integer is an intrinsic characteristic of the DWTM -level
decomposition.

Since the 2-D DWT is separable [1]–[3], [15], it can be performed
by two cascaded 1-D DWT’s. One filter bank performs the first 1-D
DWT on the rows of the 2-D square input matrixXXX (row filtering).
The row filtered outputs are collected into an intermediate matrixZZZ:
Then, the second filter bank performs 1-D DWT’s on the columns of
ZZZ (column filtering). The final result is a matrixYYY : Computation of
the second DWT requires transposition of the intermediate matrixZZZ:

The first filter bankis defined as the row 1-D DWT on theN �N
input matrixXXX = fx(r; s); 0 � r; s<Ng generating theN � N

matrix ZZZ = fz(p; q); 0 � p; q <Ng

z(p; q) =

L�1

i=0

g1(l) � x(p; q�;) for 0 � q <
N

2
(3a)

z(p; q) =

L�1

l=0

gm(l) � x p; 2m q ��N

m�1

i=1

2�i

for

1<m<M

N

m�1

i=1

2�i � q <N

m

i=1

2�i (3b)

z(p; q) =

2 �1

k=0

h(k) � x p; 2M q �N

M

i=1

2�i � k

for N
M

i=1

2�i � q <N: (3c)

The second filter bankis the column 1-D DWT on the intermediate
matrixZZZ defined in a way similar to (3). The cascade of these filter
banks defines theN � N matrix YYY = fy(u; v); 0 � u; v <Ng as
the 2-D DWT of matrixXXX: Extension to the multidimensional case
consists of a cascade of filter banks (one for each dimension of the
DWT) separated by data transposition.

A parallel 2-DN�N DWT implementation onP processors1 can
be obtained [27], [28] by partitioning the input and the intermediate
matrices. This approach (Algorithm A) is described in Fig. 1. In
step 1, the rows of the input matrixXXX are downloaded from the
host computer to the processorsN=P rows per processor. In step
2, each processor performs the 1-D DWT on the rows. In step
3, the partial results are uploaded by rows to the host to create
the intermediate matrixZZZ: Transposition is implicitly performed
by reading matrixZZZ by columns in step 4. Steps 5 and 6 are
the columnwise 1-D DWT and the result uploading, respectively.
The result is the transposed matrixYYY : The column-wise computing
phase (i.e., steps 4–6) can start only after results of the row-wise
DWT’s have been uploaded to the host; thus, PE1 is idle during
the whole time interval [C-B’]. Moreover, Algorithm A requires a
significant amount of interprocessor communications to transpose the
intermediate matrix, inducing a long latency.

To avoid these drawbacks, we propose a matrix-based approach to
parallelize the 2-D DWT. The basic idea is to describe each filter as
a matrix and the filtering as matrix-vector multiplication. This is a
well-known approach to implement convolution; the innovative idea
is to use it in order to avoid data transposition and interprocessor
communications, maintaining a high level of parallelism.

Let us consider theM matrices

WWWm = wm(i; j); 0 � i<N; 0 � j <
N

2m
; 1 � m �M

and the matrix

RRRm = rM (i; j); 0 � i<N; 0 � j <
N

2M

where

wm(i; j) �
gm(l); if i = 2m(j � l)
0; otherwise

(4)

rM(i; j) �
h(2M(j + 1)� i); if 2Mj � i< 2M(j + 1)
0; otherwise.

(5)

1For simplicity, we assume thatN=P is an integer. When this does not
hold, algorithms discussed in this correspondence will still work but will be
unbalanced: Some processors will operate ondN=Pe data sets, whereas others
wil operate onbN=Pc sets without being able to fully use their computational
power.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 1999 3181

Fig. 1. Time diagram for Algorithm A. [A-0]: the firstN=P rows of the input matrix are downloaded to PE1: [B-A]: PE1 computes the 1-D DWT ofN=P
rows. [C-B]: uploading ofN row-wise 1-D DWT’s performed byP processors (PE’s). The column-wise DWT’s cannot be computed till all the transformed
rows have been uploaded to the host for transposition. [D-C]: the firstN=P columns of the intermediate results are downloaded to PE1: [E-D]: PE1 computes
the 1-D DWT ofN=P columns. [F-E]: uploading of the column-wise 1-D DWT’s, i.e., the final 2-D DWT result.

Consider theN � N sparse matrixWWW

WWW � [[WWW 1][WWW 2][WWW 3] � � � [WWWM][RRRM]] (6)

and theN -point column vectorxxxr given by therth row of the input
matrixXXX: The 1-D DWT of theN -point vectorxxxTr (transpose of the
input vectorxxxr) can be obtained according to (1) and (2) by

zzzTr = xxxTr �WWW: (7)

TheN �N intermediate matrixZZZ can thus be obtained by juxtapo-
sition of the row vectorszzzTr resulting from (7) for each input row
xxxr, according to (3):

ZZZ = XXX �WWW: (8)

The 2-D DWT of the matrixXXX can be written by using the
following matrix expression:

YYY = ZZZT
�WWW � (XXX �WWW)T �WWW �WWW t

�XXXT
�WWW: (9)

By transposing both of the members of (9)

YYY T =WWWT
�XXX �WWW: (10)

The N columnsyyyTq (0 � q <N) of the matrixYYY T (i.e., the rows
of YYY) are given by

yyyTq =WWW t
� (XXX �wwwq) (11)

wherewwwq is theqth column ofWWW , and parentheses suggest the most
efficient computing sequence.

Equation (11) has been obtained from (10) by partitioningYYY T

by columns. This suggests an efficient parallel algorithm for com-
puting the 2-D DWT (Algorithm B), which is described in Fig. 2.
Downloading of the whole input matrixXXX is performed in steps 1
and 2. In the steps 2 and 3, each processor computes (11) forN=P
different vectorswwwq: Uploading ofN=P columnsyyyTq to the host
computer is performed in step 4. Downloading and computing can be
overlapped (see step 2) since each processor can start its computation
as soon as its data are received from the host. No time skewing is
thus necessary. Uploading can be executed simultaneously by each
processor [step 4 in Fig. 2(b)] if connections among processors and
host allow contemporaneous data transfer. Otherwise, step 4 has to be
skewed, as shown in Fig. 2(a). Unlike Algorithm A, which requires
transposition of the intermediate results, Algorithm B completely
avoids any interprocessor communications.2

2Equation (11) could suggest that Algorithm B needs O(N2)-sized memory
in each processor to storeWWW andXXX: However, (4) and (5) clearly show that
only LM values (i.e.,L points for each of theM filters) are necessary.
Besides, in a processor, each row either ofXXX or ZZZT can be written over the
previous one since any point of these vectors is processed only once by the
matrix-vector multiplication; therefore, the required memory is onlyO(N),
as for Algorithm A.

(a)

(b)

Fig. 2. Time diagram for Algorithm B, when uploading (a) cannot and
(b) can be performed simultaneously by all processors (PE’s). The interval
[I-G] is used to perform the computation. If processing is balanced, this
interval has the same duration of step 2 plus step 5 in Fig. 1. In the interval
[H-G], downloading and computing can be overlapped. In Algorithm A, this
overlapping is not feasible.

III. PERFORMANCE EVALUATION AND EXPERIMENTAL RESULTS

The performance of Algorithm B with respect to Algorithm A
is evaluated both from a theoretical point of view and with an
experimental implementation on the AT&T DSP3 parallel processor
[29].

A. Theoretical Speedup

The speed-upS of Algorithm B with respect to algorithm A is
defined as

S �
Time to compute a 2-D DWT by using Algorithm A
Time to compute a 2-D DWT by using Algorithm B

: (12)

The time intervals in the diagrams shown in Figs. 1 and 2 are as
follows.

• [A-0] and [D-C] are the latencies required to downloadN=P
input rows and N/P transformed columns, respectively

[A � 0] =
qN2

�(P)P
[s] (13a)

[D � C] =
q0N2

�(P)P
[s] (13b)

where�(P) is the average bandwidth (in bits per second) of the
interconnections amongP processors, and the hostq andq0 are
the precision (in bits) of input data and transformed coefficients,
respectively.

• [B-A] and [D-E] are the latencies required to compute the 1-D
DWT of N=P rows andN=P columns, respectively, in a single
processor

[B �A] = [D �E] = �(N)
N

P
[s] (14)

3182 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 1999

Fig. 3. Execution time required by Algorithms A and B to perform the 2-D DWT of a 128� 128 matrix by usingP processors. Time to 2-D DWT
a 128 � 128 image by Algorithm A and Algorithm B.

where�(N) is the time needed by a processor to generate the
N -point 1-D DWT.

• [C-B] and [F-E] are the latencies required to uploadN trans-
formed rows andN transformed columns, respectively

[C �B] = [F � E] =
q0N2

�(P)P
[s]: (15)

• [H-0] is the latency required to download the whole input matrix
into the multiprocessor system

[H � 0] =
qN2

�(P)P
[s]: (16)

• [G-0] is the portion of [H-0] that is not overlapped with the
actual computation

[G� 0] = �[H � 0] [s] (0<� � 1): (17)

• [J-I] is the latency required by each processor to upload the
N=P vectorsyyyTq either in a skewed or in a parallel way

[J � I] =
q0N2

�(P)
� [s] (18)

where� is either 1 or1=P in case of skewed or parallel upload,
respectively.

• [I-G] is the latency needed by a single processor to compute
(11) for each of theN=P different vectorsyyyq assigned to the
processor itself

[I �G] = �(N)
N

P
[s] (19)

where�(N) is the time needed by a processor to compute one
N -point vectoryyyq:

The speed-upS is thus given by

S =
[F�0]

[J�0]

=
[A�0]+[B�A]+[C�B]+[D�C]+[E�D]+[F�E]

[G�0]+[I�G]+[J�i]
:

(20)

Since matrixWWW is sparse, each processor needs to store and use
only the elements that area priori known to be nonzero. This can be

implemented without additional control circuitry since each processor
is a general-purpose processor executing a software program; such a
program can easily be written to skip the unnecessary multiplications.
Consequently, the computation for Algorithm B is perfectly balanced
among all processors, we can derive from (11) that�(N) = 2�(N):

The speedup becomes

S =

(q + q0)
N2

�(P)P
+ 2 �(N)

N

P
+ q0

N2

�(P)

q
N2

�(P)
� + 2�(N)

N

P
+ q0

N2

�(P)
�

[s]: (21)

Since, generally,q0
� q, the speedup is always greater than 1 for

any � and �:
In evaluating the speedup [in particular, both�(N) and �(N)],

we did not make use of any optimization (e.g., coding strategy,
compiler optimizations, fetching strategies) since they are machine
or environment specific. The detailed analysis of possible influences
both of optimizations and architectural factors goes beyond the
scope of this correspondence, which aims to describe a machine-
independent algorithm. It is worth noting that these factors have
similar influence both in Algorithms A and B since the mathematical
operations performed by them are similar.

B. Experimental Results

Algorithms A and B have been implemented and tested on the
AT&T DSP-3 multiprocessor system, even though the generality of
the proposed algorithm allows for implementation over any multi-
processor system. This architecture [29] has from 16–128 processors,
each of them containing a DSP-32C unit (50 MHz, 25 MFLOPS,
with a multiplier and an adder working in parallel) and 512K words
(32-bit) of local memory.

Our test aims to demonstrate the relative performance improvement
that can be obtained by Algorithm B with respect to Algorithm A. In
our experiments, processors have been configured in a pipeline to test
the worst connection scheme. Data downloading from the host to the
last processor of the pipeline and, similarly, results uploading onto
the host involve, therefore, all processors in the pipeline. With respect
to the implementation presented here, our algorithm can achieve
higher absolute performances if it is implemented on more powerful

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 1999 3183

Fig. 4. Speedup of Algorithm B with respect to Algorithm A to perform the 2-D DWT of aN � N matrix by usingP processors. Comparison between
the times to 2-D DWT 128� 128 and 256� 256 images by Algorithm B and Algorithm A.

processors or on machines having more efficient connection schemes
among the host and the processors. To clearly establish the advantages
of avoiding transposition in Algorithm B, we have not exploited its
ability to begin processing data as soon as they become available
(i.e., � = 1 in our implementation); this feature could provide an
even higher speedup.

Fig. 3 summarizes the results of our experiments forN =128;
similar results hold for higher values ofN: These experiments were
performed withM = 4; L = 5, 25, withP varying from 16–128.
Since the machine available in our laboratory has only 16 processors,
data forP = 16 were obtained by measuring the performance of
C++ programs running on the DSP-3, whereas data forP > 16
were derived by simulating the larger machines on our system.3 The
dip in Fig. 3 is due to the behavior of the average communication
bandwidth,�(P): In our pipelined processor connection scheme, the
average communication bandwidth decreases with the numberP of
processors. For a critical value ofP (depending on the number
of operations performed by each processor), this negative effect
overcomes the speedup achieved by the algorithm in each processor.
For Algorithm A, this critical value is approximately 32 whenL =
5 but becomes approximately 50 whenL = 25 due to the much
higher number of operations per processor. The critical values (i.e.,
the abscissas of the dips) are higher for the same value ofL in
Algorithm B since the absence of transposition reduces the impact
of communications.

Fig. 4 gives the speedup by using varying numbers of processors
for (L;N) equal to (5, 128), (5, 256), (25, 128), and (25, 256),
respectively. The speedup is greater than 1 for all cases. Algorithm A
performs transposition by uploading the intermediate results by rows

3The 16 physical processors execute the computation of the first 16 units
of a system havingP > 16: The remainingP � 16 units are virtual; their
presence is simulated only to evaluate the system operation time. Data are also
downloaded for virtual processors but not used. The virtual units are assumed
to operate in parallel with the physical ones. Results of theP processors are
uploaded through the processors’ pipeline. Propagation time of theP � 16

blocks that should be produced by the virtual processors is evaluated without
any concern to the actual propagated values. This is achieved by propagating
the last generated real block forP � 16 additional times.

and then downloading them by columns. The speedup of Algorithm
B versus Algorithm A is thus mainly related to the number of
input/output operations; since both algorithms need to download
XXX and uploadYYY , Algorithm A requires twice the total number
of input/output operations of Algorithm B. Consequently, when the
numberP of processors is high, the speedup tends to a constant since
the time intervals [B-A], [E-D], and [I-G] can be neglected (i.e., the
algorithms become I/O bound).

IV. CONCLUSIONS

Implementation of 2-D discrete wavelet transforms on paral-
lel general-purpose computers have been discussed. A traditional
parallelization technique has been considered that uses input data
partitioning (Algorithm A). A second algorithm (Algorithm B) based
on matrix-vector multiplications is introduced. The main features
of Algorithm B are theabsenceof interprocessor communications,
eliminationof transposition of intermediate results, the possibility of
overlapping input and computing phases, full use of the available
processor parallelism, modularity, and scalability. The approaches
have been tested and compared on an AT&T DSP-3 parallel computer;
experiments have shown a speedup of algorithm B from 1.01–2.63
with respect to the traditional parallelization approach.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for providing
comments and suggestions that greatly helped in improving this
correspondence.

REFERENCES

[1] M. Vetterli and J. Kovacevic,Wavelets and Subband Coding. Engle-
wood Cliffs, NJ: Prentice-Hall, 1995.

[2] I. Daubechies,Ten Lectures on Wavelets. Philadelphia, PA: SIAM,
1992.

[3] S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,”IEEE Trans. Pattern Anal. Machine Intell., vol.
2, pp. 674–693, 1989.

3184 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 1999

[4] J. Fridman and E. S. Manolakos, “Discrete wavelet transform: Data de-
pendence analysis and synthesis of distributed memory and control array
architectures,”IEEE Trans. Signal Processing, vol. 45, pp. 1291–1308,
1997.

[5] G. Beylkin, R. Coifman, and V. Rokhlin, “Fast wavelet transforms
and numerical algorithms I,”Commun. Pure Appl. Math., vol. 44, pp.
141–153, 1991.

[6] J. Fridman and E. Manolakos, “On the scalability of the 2-D discrete
wavelet transform algorithms,” inMultidimensional Systems and Signal
Processing. Boston, MA: Kluwer, 1997, vol. 8, pp. 185–217.

[7] G. Knowles, “VLSI architecture for the discrete wavelet transform,”
Electron. Lett., vol. 26, pp. 1184–1185, 1990.

[8] A. S. Lewis and G. Knowles, “VLSI architecture for 2D Daubechies
wavelet transform without multipliers,”Electron. Lett., vol. 27, pp.
171–173, 1991.

[9] K. K. Parthi and T. Nishitani, “VLSI architectures for discrete wavelet
transforms,”IEEE Trans. VLSI Syst., vol. 1, pp. 191–202, 1993.

[10] C. Chakrabarti and M. Vishwanath, “Efficient realizations of discrete
and continuous wavelet transforms: From single chip implementations
to mappings on SIMD array computers,”IEEE Trans. Signal Processing,
vol. 43, pp. 759–771, 1995.

[11] J. Bae and V. K. Prasanna, “Synthesis of VLSI architectures for two-
dimensional discrete wavelet transforms,” inProc. IEEE Int. Conf.
Application-Specific Array Processors, 1995, pp. 174–181.

[12] H. Y. H. Chuang and L. Chen, “VLSI architecture for fast 2D discrete
orthonormal wavelet transform,”IEEE J. VLSI Syst., vol. 26, pp.
225–236, 1995.

[13] J. Vega-Pineda, S. Cabrera, and Y. C. Chang, “VLSI implementation of
a wavelet image compression technique using replicant coding/decoding
cells,” in Proc. IEEE Int. Symp. Circuits Syst., 1995, pp. 1173–1176.

[14] C. C. Hsu, J. Ding, and M. E. Zaghloul, “An image discrete wavelet
transform and the hardware implementation,” inProc. IEEE Int. Symp.
Circuits Syst., 1995, pp. 1315–1319.

[15] M. Vishwanath, R. M. Owens, and M. J. Irwin, “VLSI architectures for
the discrete wavelet transform,”IEEE Trans. Circuits Syst. II, vol. 42,
pp. 305–316, 1995.

[16] B. M. R. Lang and A. Spray, “Input buffering requirements of a systolic
array for the inverse discrete wavelet transform,” inProc. IEEE Conf.

Application-Specific Array Processors, July 1995, pp. 165–173.
[17] C. Chakrabarti, M. Vishwanath, and R. M. Owens, “Architectures for

wavelet transforms: A survey,”J. VLSI Signal Process., vol. 14, pp.
171–192, 1996.

[18] H. Sava, M. Fleury, A. C. Downtown, and A. F Clark, “Parallel pipeline
implementation of wavelet transform,”Proc. Inst. Elect. Eng., Vision
Image Process., vol. 144, no. 6, pp. 355–359, Dec. 1997.

[19] J. Lu, “Parallelizing mallat algorithm for 2-D wavelet transform,”
Inform. Process. Lett., vol. 45, pp. 255–259, 1993.

[20] M. Maresca and H. Li, “Morphological operations on mesh connected
architectures: A generalized convolution algorithm,” inProc. IEEE
Comput. Soc. Conf. Comput. Vision Pattern Recogn., 1986, pp. 299–304.

[21] L. Auslander, E. Feig, and S. Winograd, “New algorithms for the mul-
tidimensional discrete fourier transform,”IEEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-31, pp. 388–403, 1983.

[22] R. Blahut, Fast Algorithms for Digital Signal Processing. Reading,
MA: Addison-Wesley, 1985.

[23] I. Gertner and M. Rofheart, “A parallel algorithm for 2-D DFT computa-
tion with no interprocessor communication,”IEEE Trans. Paral. Distrib.
Syst., vol. 1, pp. 377–382, 1990.

[24] I. Gertner, “A new efficient algorithm to compute the two-dimensional
discrete Fourier transform,”IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. 36, pp. 1036–1050, 1988.

[25] G. I. Kechriotis, M. An, M. Bletsas, R. Tolimieri, and E. S. Manolakos,
“A new approach for computing multidimensional DFT’S on parallel
machines and its implementation on the iPSC/860 hypercube,”IEEE
Trans. Signal Processing, vol. 43, pp. 272–285, 1995.

[26] V. Milutinovic, A. B. Fortes, and L. H. Jamieson, “A multiprocessor
architecture for real-time computation of a class of DFT algorithms,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp.
1301–1309, 1986.

[27] A. V. Oppenheim and R. W. Schafer,Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

[28] H. C. Andrews,Computer Techniques in Image Processing. New York:
Academic, 1970.

[29] AT&T, DSP3 General Information Manual.

