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A Parallel Implementation of the 2-D Discrete Wavelet  processing parameters is important to achieve high-quality results.
Transform without Interprocessor Communications The use of general-purpose systems must be pursued also when the
application is not required to have a flexible and adaptable imple-
Francescomaria I\/IarinO, VincenZO Piuri, and Eal’l E. SWartZIander, ﬁ{entationl but the production Vo|ume is (e} IOW that deve|opment and
fabrication of a dedicated system is too expensive. In the literature,
. . . only few researchers have dealt with the DWT implementation
Abstract—The discrete wavelet transform is currently attracting much . L .
interest among researchers and practitioners as a powerful tool for on general-purpose machines. Parallelization of the 2-D DWT is
a wide variety of digital signal and imaging processing applications. Proposed in [19] by using thenake sweeping algorithif20]. Both
This correspondence presents an efficient approach to compute the two- DWT data dependence and localization analysis have been studied in
dimensional (2-D) discrete wavelet transform in standard form on parallel [4] to design a distributed parallel memory/control architecture.

general-purpose computers. This approach does not require transposition . . o . . . .
of intermediate results and avoids interprocessor communication. Since it Maximum computational efficiency is an important issue in the use

is based on matrix-vector multiplication, our technique does not introduce Of multiprocessors for DWT processing. Unfortunately, the research
any restriction on the size of the input data or on the transform param- mentioned above does not address how to avoid the interprocessor
Etedrs- C?rgfl)_'ete use ‘r’]f, theda‘{l?‘r']'ab'e _pr?cesgor par?‘”e"smlv moldu'a_‘“ty- communications required to transpose the intermediate results in the
and scalability are achieved. Theoretical and experimental evaluations ., . . -
and comparisons are given with respect to traditional parallelization. 2-D DWT. SO_IUtlonS to this problem have been pres_enteq in literature
only for classical transforms, e.g., the DFT. An algorithm is presented
Index Terms—Discrete wavelet transform, interprocessor communica- [21] to compute aV’"-pointk-D DFT (whereN is a prime number)
tions, matrix-vector multiplication, parallel processing. by evaluating(N" — 1)/(N — 1) independent one-dimensional (1-
D) DFT’s. In [22], the case of the 2-D DFT faV = p? (with p
|. INTRODUCTION a prime number) andV = 2" is considered. In [23], the parallel

The discrete wavelet transform (DWT) [1]-[6] has been developé@plementation of_the algorithm describe_d in [24_f] is discussed for
recently as a feature extraction tool for signal and image processmﬁ ATf?‘T BT100 binary-tree compute[. Th's algorithm computes the
and has been shown to be efficient in comparison to tradition‘alx,A 2-D DFT .by means of. = O(N) |ndep§ndenf\’-pq|nt 1-D )
signal processing techniques in several industrial and commerdi4T | S and the discrete radon transform applied to the input matrix
applications. created by usmgnear congruencedased (_:rlterla [24]; to solve these_ _

The massive computation required by the DWT can be met orfingruences, simple formulas are provided only f_or some specific
with suitable computing resources. If the application is well defineffues ofN" [24]. In [25], thereduced transform algorithris used to
and real-time operation is important, dedicated VLS| ASIC solutiorglance communication and computation in a parallel machine, but
should be considered (see, e.g., [7]-[18]). In particular, two efficieHté Sizes of the input array must be prime numbers. These algorithms
SIMD architectures are proposed in [10] to implement the 1-D ad@Pose restrictions on the size of the input array, thus making them
the 2-D DWT'’s, respectively. A pipeline-based realization of the 2-jongeneral.

DWT is described in [18]. Other efficient architectures are presentedin [26], the matrix-vector multiplication approach has been shown

in [4], [15], and [17]. Whenever either the application or the desirdfghly suitable and effective for DFT when the input data are

DWT processing is subject to change, VLSI implementation is n§gduentially available since the matrix-vector multiplication does not
need the whole input data set to begin its operation. This approach
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interested in maximizing the parallelism of the computation itselfnatrix Z = {z(p,q);0 < p,g< N}

we have selected the intrinsically parallel filter bank algorithm [1]

L—1

to perform the DWT in standard form. Mallat's algorithm [3] is _ Z g (1) - 2(pog—;) for0< g< N (3a)
usually preferred in hardware implementations since the same circuit = ' - 2

can be used repeatedly with the same coefficients to generate every L1 me1
transformation output, even though it has a higher latency. However, z(p,q) = Z gm(D) - @ (1)7 om (Q — _N Z 2i>>

these two algorithms are equivalent from the point of view of the =0 i=1

DWT results sinceMallat’s algorithm can be viewed as the unrolled 1< m1< M

version of the filter bank. A suitable choice of the filter bank — . = .

coefficients achieves a result quality similar to that provided by forq a Zl 27 <g<N Zl 2 (3b)

Mallat's algorithm. Coefficients of one of these two approaches can Car
be easily transformed one into those of the other. In our software P Y . M _
implementation, the use either of the same or different coefficients () = > bk x| p 2V (g N Z 20—k
to generate each DWT output has no effect on the computational F=0 =t
complexity. Therefore, we take advantage of the intrinsic parallelism
of the filter bank to reduce the latency. Consequently, the application

domain of the proposed approach covers the areas typically tackled ] ] ) )
by using Mallat's algorithm. The second filter banks the column 1-D DWT on the intermediate

This corespondence is structured as follows. The parallelization dpatrix Z defined in a way similar to (3). The cascade of these filter
proach based on matrix-vector multiplication is defined in Section fanks defines thé" x N matrix ¥ = {y(u,v);:0 < u,v <N} as
Section Il provides a theoretical analysis of the computational corfle 2-D DWT of matrixX'. Extension to the multidimensional case
p|ex|ty and the performance evaluation for an experimenta| imp|§0nSiStS of a cascade of filter banks (One for each dimension of the

mentation on the AT&T DSP3 parallel computer. DWT) separated by data transposition.
A parallel 2-DN x N DWT implementation orP processorscan

be obtained [27], [28] by partitioning the input and the intermediate
matrices. This approachAlgorithm A is described in Fig. 1. In
step 1, the rows of the input matriX are downloaded from the
The wavelet transform [1]-[6] is a mathematical technique that deest computer to the processals/ P rows per processor. In step
composes a signal by using dilated/contracted and translated versigngach processor performs the 1-D DWT on the rows. In step
of a single finite-duration basis function. In the literature, differers, the partial results are uploaded by rows to the host to create
1-D DWT'’s have been proposed according to the nature of the sign@le intermediate matrixZ. Transposition is implicitly performed
the time, and the scaling parameters. Any 1-D DWT can be viewe§ reading matrixZ by columns in step 4. Steps 5 and 6 are
as a parallel filter bank consisting 81 filters G..(m = 1,---, M), the columnwise 1-D DWT and the result uploading, respectively.
where The result is the transposed matdix The column-wise computing
m filter level; phase (i.e., steps 4-6) can start only after results of the row-wise
M transform order; DWT’'s have been uploaded to the host; thus, RE& idle during
H suitable lowpass filter. the whole time interval [C-B’]. Moreover, Algorithm A requires a

All filters operate in parallel on the same input sequenoésampled Significant amount of interprocessor communications to transpose the

input datax(s). Each filterG,,, is characterized by.,. coefficients intermediate matrix, inducing a long latency.
and generates the sequengce having N/2™ components),., (s) To avoid these drawbacks, we propose a matrix-based approach to
' parallelize the 2-D DWT. The basic idea is to describe each filter as

Ym(s) = Z Gm (D) - 2(2™ (s = 1)). (1) a matrix and the filtering as matrix-vector multiplication. This is a
1=0 well-known approach to implement convolution; the innovative idea
is to use it in order to avoid data transposition and interprocessor
communications, maintaining a high level of parallelism.
Let us consider thel/ matrices

M
for ¥y 27" <q< N (3c)

=1

Il. THE MATRIX APPROACH TO THE
PARALLEL IMPLEMENTATION OF THE 2-D DWT

The lowpass filtetH = |h(0), A(1),- -+, h(I),--+,h(2™ —1)| gen-
erates the residual filtered sequenge having N/2* components
yr(s)

A? ,1§m§zw}

m

Wrn = {lL'rrL(i7j);0 S 1< JV,O S ] <

oM _q

M
e (5) ; hk) - w(27s = ). @ and the matrix

The 1-D DWT of the sequence is obtained by collecting the R, = {r,x,f(i./j);() <i<N,0<Lj< 2\_u}
M + 1 sequencey,.y,, --,y,,. andy,. It is worth noting that
the ¥/2" integer is an intrinsic characteristic of the DWi-level \here
decomposition. o oms

Since the 2-D DWT is separable [1]-[3], [15], it can be performed w,,(i,j) = {gm(l)’ It i = - =0 4
by two cascaded 1-D DWT'’s. One filter bank performs the first 1-D 0, otherwise ,
DWT on the rows of the 2-D square input matd (row filtering). ran(isj) = { n2M (i 4+1) —4), if 2V <i< 2Y(j+1) 5)
The row filtered outputs are collected into an intermediate marix ' 0, otherwise.

Then, the second filter bank performs 1-D DWT's on the columns of o ' ' _
Z (column filtering). The final result is a matri. Computation of _For simplicity, we assume tha¥'/ P is an integer. When this does not

. . . . . hold, algorithms discussed in this correspondence will still work but will be
the second DWT requires transposition of the intermediate métrix unbalanced: Some processors will operatg dif P data sets, whereas others

Thefirst filter bankis defined as the row 1-D DWT on th€ x N il operate on| N/ P| sets without being able to fully use their computational
input matrix X = {z(r,s);0 < r,s <N} generating theV x N power.
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processors

PEp

PEr

0A

Fig. 1. Time diagram for Algorithm A. [A-O]: the firsiv/ P rows of the input matrix are downloaded to PEB-A]: PE; computes the 1-D DWT oN/P

rows. [C-B]: uploading ofN row-wise 1-D DWT'’s performed by processors (PE’s). The column-wise DWT’s cannot be computed till all the transformed
rows have been uploaded to the host for transposition. [D-C]: theNifgt columns of the intermediate results are downloaded tp. [EED]: PE; computes

the 1-D DWT of N/P columns. [F-E]: uploading of the column-wise 1-D DWT’s, i.e., the final 2-D DWT result.

Consider theN x N Sparse matrixi¥ processors
W = [[WL][W2][Ws]- - [Wa][Ru]] (6)

and theN -point column vectote,. given by therth row of the input
matrix X. The 1-D DWT of theN-point vectorz? (transpose of the
input vectorz,) can be obtained according to (1) and (2) by

2L =zl xW. ©)

The N x N intermediate matri>Z can thus be obtained by juxtapo-
sition of the row vectors:! resulting from (7) for each input row
x-, according to (3):

Z=XxW. (8)
(b)
The 2-D DWT of the matrixX can be written by using the Fig. 2. Time diagram for Algorithm B, when uploading (a) cannot and
following matrix expression: (b) can be performed simultaneously by all processors (PE’s). The interval

[I-G] is used to perform the computation. If processing is balanced, this
Y=ZT xW=(XxWIxW=w'xXT xW. 9 interval has the same duration of step 2 plus step 5 in Fig. 1. In the interval
( ) ©) [H-G], downloading and computing can be overlapped. In Algorithm A, this

. lapping i t feasible.
By transposing both of the members of (9) overiapping 1s not feasibie

Yyi=wl x X xw. (10) Ill. PERFORMANCE EVALUATION AND EXPERIMENTAL RESULTS

The performance of Algorithm B with respect to Algorithm A
is evaluated both from a theoretical point of view and with an
experimental implementation on the AT&T DSP3 parallel processor
[29].

The N columnsy, (0 < ¢< N) of the matrixY" (i.e., the rows
of Y) are given by

y, = W' x (X x w,) (11)

wherew, is thegth column of W, and parentheses suggest the moé- Theoretical Speedup
efficient computing sequence. The speed-ups of Algorithm B with respect to algorithm A is
Equation (11) has been obtained from (10) by partition¥i§ defined as

by columns. This suggests an efficient parallel algorithm for com- _ _ Time to compute a 2-D DWT by using Algorithm A
puting the 2-D DWT Algorithm B, which is described in Fig. 2. =~ Time to compute a 2-D DWT by using Algorithm B
Downloading of the whole input matriX' is performed in steps 1 The time intervals in the diagrams shown in Figs. 1 and 2 are as
and 2. In the steps 2 and 3, each processor computes (11/fBr follows

different vectorsw,. Uploading of N/P columnsy! to the host '

q ° - _ i i
computer is performed in step 4. Downloading and computing can be [A-0] and [D-C] are the latencies required to download P

(12)

overlapped (see step 2) since each processor can start its computation!"PUt Fows and N/P transformed columns, respectively

as soon as its data are received from the host. No time skewing is [A—0] = gN? 9 (13a)
thus necessary. Uploading can be executed simultaneously by each i B(P)P

processor [step 4 in Fig. 2(b)] if connections among processors and ¢N?

host allow contemporaneous data transfer. Otherwise, step 4 has to be [D-C= 3(P)P [s] (13b)

skewed, as shown in Fig. 2(a). Unlike Algorithm A, which requires
transposition of the intermediate results, Algorithm B completely
avoids any interprocessor communicatiéns.

whereg(P) is the average bandwidth (in bits per second) of the
interconnections amonf processors, and the hagtandq’ are
the precision (in bits) of input data and transformed coefficients,

2Equation (11) could suggest that Algorithm B need$\3)-sized memory respectively. . .
in each processor to stol® and X. However, (4) and (5) clearly show that * [B-A] and [D-E] are the latencies required to compute the 1-D

only LM values (i.e.,.L points for each of thel/ filters) are necessary. DWT of N/P rows andN/P columns, respectively, in a single
Besides, in a processor, each row eithedXobr Z7 can be written over the processor

previous one since any point of these vectors is processed only once by the B

matrix-vector multiplication; therefore, the required memory is oPlyV), [B—Al=[D-E]= T(N)Q El (14)
as for Algorithm A. P
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Fig. 3. Execution time required by Algorithms A and B to perform the 2-D DWT of a ¥2828 matrix by usingP processors. Time to 2-D DWT
a 128 x 128 image by Algorithm A and Algorithm B.

wherer(N) is the time needed by a processor to generate tireplemented without additional control circuitry since each processor

N-point 1-D DWT. is a general-purpose processor executing a software program; such a
» [C-B] and [F-E] are the latencies required to uploAdtrans- program can easily be written to skip the unnecessary multiplications.
formed rows andV transformed columns, respectively Consequently, the computation for Algorithm B is perfectly balanced
¢ N? among all processors, we can derive from (11) tha{') = 27 (V).
[C-B]=[F-E]= 3PP EF (15)  The speedup becomes
72 T 2
 [H-0] is the latency required to download the whole input matrix (g+4q)- N +2 <T(JV)£ +4q /‘ _ )
into the multiprocessor system g = ﬁZ(P)P . P NZJ(P) S @
AT N A Y , N°
=0 = 5iap 18 ae) Gy T
- [G-0] is the portion of [H-0] that is not overlapped with theSince, generallyg” > g, the speedup is always greater than 1 for
actual computation any x and. ] . i
In evaluating the speedup [in particular, bathN') and §(N)],
(G —0] =n[H ~0] [g] (0<n <1). (17)  we did not make use of any optimization (e.g., coding strategy,
« [J-] is the latency required by each processor to upload tig@mpiler optimizations, fetching strategies) since they are machine
N/ P vectorsy, either in a skewed or in a parallel way or environment specific. The detailed analysis of possible influences
N both of optimizations and architectural factors goes beyond the
[J-1I]= ;{i(LP)X El (18) scope of this correspondence, which aims to describe a machine-

independent algorithm. It is worth noting that these factors have
wherey is either 1 orl /P in case of skewed or parallel upload,similar influence both in Algorithms A and B since the mathematical
respectively. operations performed by them are similar.

* [I-G] is the latency needed by a single processor to compute
(11) for each of theV/ P different vectorsy, assigned to the

processor itself B. Experimental Results
N . .
[I-G]= 6(N‘)l s (19) Algorithms A ar_ld B have been implemented and tested on the
P AT&T DSP-3 multiprocessor system, even though the generality of

whereé (V) is the time needed by a processor to compute onke proposed algorithm allows for implementation over any multi-

N-point vectory,,. processor system. This architecture [29] has from 16—128 processors,
The speed-ugs is thus given by each of them containing a DSP-32C unit (50 MHz, 25 MFLOPS,
with a multiplier and an adder working in parallel) and 512K words
[F-0] (32-bit) of local memory.
5= [7—0] Our test aims to demonstrate the relative performance improvement

that can be obtained by Algorithm B with respect to Algorithm A. In
our experiments, processors have been configured in a pipeline to test
the worst connection scheme. Data downloading from the host to the
last processor of the pipeline and, similarly, results uploading onto
the host involve, therefore, all processors in the pipeline. With respect
Since matrixW is sparse, each processor needs to store and wsethe implementation presented here, our algorithm can achieve
only the elements that agepriori known to be nonzero. This can behigher absolute performances if it is implemented on more powerful

_ [A=0]+[B—A]+[C—Bl+[D-C|+[E—-D|+[F-E]
= [G—O0l+[T—G]+[J —i] '
(20)
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Fig. 4. Speedup of Algorithm B with respect to Algorithm A to perform the 2-D DWT adVax /N matrix by usingP processors. Comparison between
the times to 2-D DWT 128x 128 and 256x 256 images by Algorithm B and Algorithm A.

processors or on machines having more efficient connection scheraed then downloading them by columns. The speedup of Algorithm
among the host and the processors. To clearly establish the advant&8yegrsus Algorithm A is thus mainly related to the number of
of avoiding transposition in Algorithm B, we have not exploited itsnput/output operations; since both algorithms need to download
ability to begin processing data as soon as they become availalleand uploadY, Algorithm A requires twice the total number
(i.,e., » = 1 in our implementation); this feature could provide arof input/output operations of Algorithm B. Consequently, when the
even higher speedup. numberP of processors is high, the speedup tends to a constant since

Fig. 3 summarizes the results of our experiments ¥or=128; the time intervals [B-A], [E-D], and [I-G] can be neglected (i.e., the
similar results hold for higher values df. These experiments were algorithms become /O bound).
performed withA = 4; L = 5, 25, with P varying from 16-128.
Since the machine available in our laboratory has only 16 processors,
data for P = 16 were obtained by measuring the performance of
C++ programs running on the DSP-3, whereas data Fos 16 Implementation of 2-D discrete wavelet transforms on paral-
were derived by simulating the larger machines on our sysdtéhe lel general-purpose computers have been discussed. A traditional
dip in Fig. 3 is due to the behavior of the average communicatigrarallelization technique has been considered that uses input data
bandwidth,3(P). In our pipelined processor connection scheme, theartitioning (Algorithm A). A second algorithm (Algorithm B) based
average communication bandwidth decreases with the nufbefr on matrix-vector multiplications is introduced. The main features
processors. For a critical value d® (depending on the number of Algorithm B are theabsenceof interprocessor communications,
of operations performed by each processor), this negative effédiminationof transposition of intermediate results, the possibility of
overcomes the speedup achieved by the algorithm in each procesgeerlapping input and computing phases, full use of the available
For Algorithm A, this critical value is approximately 32 whén=  processor parallelism, modularity, and scalability. The approaches
5 but becomes approximately 50 whén= 25 due to the much have been tested and compared on an AT&T DSP-3 parallel computer,
higher number of operations per processor. The critical values (i.experiments have shown a speedup of algorithm B from 1.01-2.63
the abscissas of the dips) are higher for the same valug of with respect to the traditional parallelization approach.
Algorithm B since the absence of transposition reduces the impact
of communications. ACKNOWLEDGMENT

Fig. 4 gives the speedup by using varying numbers of processors
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